Math-2A Lesson 3-1 (Radicals)

$\sqrt{3}$ What number is equivalent to the square root of 3 ?
$x=\sqrt{3}$ Square both sides of the equation
$(x)^{2}=(\sqrt{3})^{2} \quad x^{2}=3$
$x=\sqrt{3}$ is an equivalent statement to $x^{2}=3$

$$
\begin{aligned}
\sqrt{3} & \approx 1.732 \quad \text { There is no equivalent number } \\
& \approx 1.7321 \quad \text { The decimal, is just an approxime } \\
& \approx 1.73205 \\
& \approx 1.732051 \\
& \approx 1.7320508 \ldots
\end{aligned}
$$

The Irrational number system was created because of the side lengths of right triangles.

Pythagorean Theorem: If it's a right triangle, then side lengths can be related by:

Vocabulary

Irrational numbers: cannot be written as a ratio of integers: $1 / 2,-2 / 3$, etc.

The decimal version of an irrational number never terminates and never repeats. (5.13257306...).

If we see the radical symbol, the number is usually irrational (unless it is a "perfect square).

$$
\sqrt{4}=2(\text { rational \# }) \quad \sqrt{3}
$$

$x=\sqrt[2]{3} \quad$ The "square root of 3 " means:
$x^{2}=3 \quad$ "what number squared equals 3 ?"
$x=\sqrt[3]{4} \quad$ The "3rd root of 4 " means:
$x^{3}=4$
"what number cubed equals 4?"
$x=\sqrt[5]{2}$ The " $5^{\text {th }}$ root of 2" means:
$x^{5}=2 \quad$ "what number used as a factor 5 times equals 2?"

Fill in the blanks. Try to recognize the perfect squares.

$$
\begin{array}{llll}
x=\sqrt[2]{16} & y=\sqrt[2]{19} & z=\sqrt[2]{22} & k=\sqrt[2]{25} \\
x^{2}=16 & y^{2}=19 & z^{2}=22 & k^{2}=25 \\
x= & y=\ldots & z=- & k=
\end{array}
$$

$$
\begin{array}{llllll}
4 & 4.2 & 4.4 & 4.6 & 4.8 & 5
\end{array}
$$

Adding and subtracting radicals

Can these two terms be combined using addition? $3 x+2 x$ Write $3 x$ as repeated addition $x+x+x$ Write 2 x as repeated addition $x+x$

$$
3 x+2 x \rightarrow x+x+x+x+x \rightarrow 5 x
$$

When multiplication is written as repeated addition, "like terms" look exactly alike.
$3 \sqrt{x}+2 \sqrt{x} \rightarrow \sqrt{x}+\sqrt{x}+\sqrt{x}+\sqrt{x}+\sqrt{x} \rightarrow 5 \sqrt{x}$
$3 \sqrt{6}+2 \sqrt{6} \rightarrow \sqrt{6}+\sqrt{6}+\sqrt{6}+\sqrt{6}+\sqrt{6} \rightarrow 5 \sqrt{6}$

Define "like powers" "Same base, same exponent".

$$
3 x^{4}+2 x^{4} \rightarrow 5 x^{4}
$$

Define "like radicals" "Same radicand, same index number".

$$
3 \sqrt{6}+2 \sqrt{6} \rightarrow 5 \sqrt{6}
$$

Which of the following are "like radicals" that can be added?

$$
\begin{array}{ll}
\sqrt{2}+\sqrt{3} & \sqrt[4]{5}+\sqrt[4]{5} \\
2 \sqrt{3}+3 \sqrt{2} & 3 \sqrt[5]{2}+4 \sqrt[5]{2} \\
\sqrt[4]{2}+\sqrt[3]{2} & 6 \sqrt[3]{4}+6 \sqrt[4]{4}
\end{array}
$$

$$
\sqrt{3}+\sqrt{2} \rightarrow \sqrt{3+2}=\sqrt{5} \quad \text { Are they equivalent? }
$$

$$
\sqrt{3} \approx 1.7321 \ldots \quad \sqrt{2} \approx 1.4142 \ldots
$$

$$
\sqrt{3}+\sqrt{2}=3.1462 \ldots \sqrt{5} \approx 2.2630 \ldots
$$

$$
\sqrt{3}+\sqrt{2} \neq \sqrt{5}
$$

$$
\sqrt{a}+\sqrt{b} \neq \sqrt{a+b}
$$

This is NOT a property of radicals. NEVER DO THIS!!!!

$$
\begin{aligned}
& \sqrt{4}+\sqrt{9} \rightarrow \sqrt{13} \\
& \sqrt{4}+\sqrt{9} \rightarrow 2+3 \rightarrow 5 \neq \sqrt{13}
\end{aligned}
$$

Simplify the following:
$3 \sqrt{2}+5 \sqrt{2} \rightarrow 8 \sqrt{2}$
$5 \sqrt{3}-4 \sqrt{3} \rightarrow \sqrt{3}$
$\sqrt{5}+3 \sqrt{5} \rightarrow 4 \sqrt{5}$
$7 \sqrt{6 x}+2 \sqrt{6 x} \rightarrow 9 \sqrt{6 x}$
$3 \sqrt{x}+2 \sqrt{x} \rightarrow 5 \sqrt{x}$
$5 \sqrt{2 x}-\sqrt{5 x}+3 \sqrt{5 x} \rightarrow 5 \sqrt{2 x}+2 \sqrt{5 x}$
$7 \sqrt{6}+2 \sqrt{24}$ not "like terms" in their present form
$\sqrt{3} * \sqrt{2}$

$$
\begin{gathered}
\sqrt{3} \approx 1.7321 \ldots \quad \sqrt{2} \approx 1.4142 \ldots \\
\sqrt{3 * \sqrt{2} \approx 2.4495} \\
\sqrt{6 \approx 2.4495} .
\end{gathered}
$$

Product of Radicals Property

$\sqrt{a} * \sqrt{b} \rightarrow \sqrt{a^{*} b} \quad \sqrt{5} * \sqrt{2}=\sqrt{10}$
$\sqrt{4} * \sqrt{9} \rightarrow \sqrt{4 * 9}$

$$
\begin{gathered}
2 * 3 \rightarrow \sqrt{36} \\
2 * 3 \rightarrow 6 \\
6=6
\end{gathered}
$$

$$
\sqrt{5} * \sqrt{2}=\sqrt{10}
$$

Are these equivalent?

$$
\sqrt{a} * \sqrt{b}=\sqrt{a b}
$$

Although I only gave two examples, it actually DOES WORK for zero and all positive numbers.
$\sqrt{a} * \sqrt{b}=\sqrt{a b} \quad$ Simplify the following:
$3 \sqrt{8} * 5 \sqrt{2}$
$3 * \sqrt{8} * 5 * \sqrt{2}$
$3 * 5 * \sqrt{8} * \sqrt{2}$
$15 * \sqrt{8} * \sqrt{2}$
$15 * \sqrt{16}$
$15 * 4=60$
$2 \sqrt{3} * 3 \sqrt{5} \rightarrow 6 \sqrt{15}$
$7 \sqrt{6} * 2 \sqrt{5} \rightarrow 14 \sqrt{30}$
$\sqrt{5}+3 \sqrt{5} \rightarrow 4 \sqrt{5}$
$7 \sqrt{6}+2 \sqrt{6} \rightarrow 9 \sqrt{6}$

Simplify radicals: use the Product of Radicals to "factor" the radical into a "perfect square" times a number.

$$
\sqrt{a} * \sqrt{b}=\sqrt{a b}
$$

$$
\sqrt{18} \rightarrow \sqrt{9} * \sqrt{2} \rightarrow 3 * \sqrt{2} \rightarrow 3 \sqrt{2}
$$

Simplify

$$
\sqrt{24} \rightarrow \sqrt{4} * \sqrt{6} \rightarrow 2 \sqrt{6}
$$

$$
3 \sqrt{32 x^{2}} \rightarrow 3 * \sqrt{16} * \sqrt{x^{2}}+\sqrt{2} \rightarrow 3 * 4 * x * \sqrt{2} \rightarrow 12 x \sqrt{2}
$$

$$
\begin{aligned}
-2 \sqrt{56 x^{3} y} & \rightarrow-2 * \sqrt{x^{2}} * \sqrt{8 * 7 x y} \\
& \rightarrow-2 * x * \sqrt{4} * \sqrt{2 * 7 x y} \\
& \rightarrow-4 x \sqrt{14 x y}
\end{aligned}
$$

Perfect Square: the result of multiplying a number times itself.

 $3 * 3=9$ " 9 " is a perfect square because it is equivalent to $3 * 3$. $3^{2}=9 \quad$ Find the first 10 perfect squares.$$
\begin{array}{ll}
1^{2}=\underline{1} \\
2^{2}=\underline{4} & 6^{2}=\underline{36} \\
3^{2}=\underline{9} & 7^{2}=\underline{49} \\
4^{2}=\underline{16} & 8^{2}=\underline{64} \\
5^{2}=\underline{25} & 9^{2}=\underline{81} \\
& 10^{2}=\underline{100}
\end{array}
$$

Simplify radicals: use the Product of Radicals to "break apart" the radical into a "perfect square" times a number.

$$
\sqrt{a} * \sqrt{b}=\sqrt{a b}
$$

Simplify

$$
\begin{aligned}
7 \sqrt{6}+2 \sqrt{24} & \rightarrow 7 \sqrt{6}+(2 * \sqrt{4} * \sqrt{6}) \\
& \rightarrow 7 \sqrt{6}+(2 * 2 * \sqrt{6}) \\
& \rightarrow 7 \sqrt{6}+4 \sqrt{6} \\
& \rightarrow 11 \sqrt{6}
\end{aligned}
$$

$$
\begin{aligned}
-3 \sqrt{32}+2 \sqrt{8} \rightarrow & (-3 * \sqrt{16} * \sqrt{2})+(2 * \sqrt{4} * \sqrt{2}) \\
& \rightarrow(-3 * 4 * \sqrt{2})+(2 * 2 * \sqrt{2}) \\
& \rightarrow-12 \sqrt{2}+4 \sqrt{2} \\
& \rightarrow-8 \sqrt{2}
\end{aligned}
$$

Simplify radicals: use the Product of Radicals to "factor" the radical into a "powers of exponent ' m ' " times a number.
$\sqrt[m]{a} * \sqrt[m]{b}=\sqrt[m]{a b} \quad \sqrt[3]{x^{4}} \rightarrow \sqrt[3]{x^{3}} * \sqrt[3]{x} \rightarrow x \sqrt[3]{x}$
Simplify

$$
\begin{aligned}
& \sqrt[4]{3 x^{5} y} \rightarrow \sqrt[4]{x^{4}} * \sqrt[4]{3 x} \rightarrow x \sqrt[4]{3 x} \\
& 3 \sqrt[3]{16 x^{2} y^{5}} \rightarrow 3 * \sqrt[3]{8} * \sqrt[3]{y^{3}} * \sqrt[3]{2 x^{2} y^{2}} \\
& \rightarrow 3 * \sqrt[3]{2^{3}} * \sqrt[3]{y^{3}} * \sqrt[3]{2 x^{2} y^{2}} \\
& \rightarrow 3 * 2 * y * \sqrt[3]{2 x^{2} y^{2}} \\
& \rightarrow 6 y \sqrt[3]{2 x^{2} y^{2}}
\end{aligned}
$$

Another way to Simplify Radicals Factor, factor, factor!!!

$$
\sqrt{54} \rightarrow \sqrt[2]{54} \rightarrow \sqrt[2]{2 * 27} \rightarrow \sqrt[2]{2 * 3 * 9} \rightarrow \sqrt[2]{2 * 3 * 3 * 3)}
$$

What is the factor that is used ' 2 ' times under the radical?
"Factor out" the factor (that is used 2 times).

$$
\rightarrow 3 \sqrt[2]{2 * 3} \rightarrow 3 \sqrt{6}
$$

Using Properties of Exponents to reduce the writing:

$$
\begin{aligned}
& \sqrt[4]{32 x^{6}} \rightarrow \sqrt[4]{32 * x^{4} * x^{2}} \rightarrow x \sqrt[4]{32 * x^{2}} \\
& \rightarrow x \sqrt[4]{2^{4} * 2^{1} * x^{2}} \rightarrow 2 x \sqrt[4]{2 x^{2}}
\end{aligned}
$$

