## Math-2A

## Lessons 2-7 <br> Powers: Part 3 <br> Zero and Negative Exponents

No Exponent? $\quad 3 x=3^{1} x^{1}$
Usually, we don't write the exponent ' 1 ' (saves ink).
$\underline{\text { No Coefficient? }} \quad x^{3}=1 * x^{3}=1^{1 *} x^{3}$
Usually, we don't write the coefficient '1' (saves ink).
Negative? $-x^{2}=(-1) * x^{2}=(-1)^{1} * x^{2}$
Usually, we don't write the coefficient '-1', we just put the "negative symbol" (saves ink).

## $\underline{\text { Power: }}$ is repeated multiplication $x^{4}=x * x * x * x$

 multiplication: is repeated addition $3 x=x+x+x$ How can you tell which definition to use? Use the "context" of the problem (adding two "like" terms)$$
3 x+4 x \rightarrow(x+x+x)+(x+x+x+x) \rightarrow 7 x
$$

(adding two "like powers")

$$
2 x^{2}+3 x^{2} \rightarrow\left(x^{2}+x^{2}\right)+\left(x^{2}+x^{2}+x^{2}\right) \rightarrow 5 x^{2}
$$

(multiplying two
"same based powers"

$$
x^{2} * x^{3} \rightarrow(x * x)(x * x * x) \rightarrow x^{5}
$$

Multiply Powers Property When you multiply powers having the same base, you add the exponents.

$$
\begin{aligned}
& \left(x^{2}\right)\left(x^{3}\right)=\left(x^{*} x\right)\left(x^{*} x * x\right)=x^{5} \\
& \text { 'x' used as a factor five times } \\
& x^{2} x^{3}=x^{2+3}=x^{5}
\end{aligned}
$$

Exponent of a Power Property When a power is inside parentheses and the parentheses has an exponent you multiply the exponents.

$$
\left(x^{2}\right)^{3}=\left(x^{2}\right)\left(x^{2}\right)\left(x^{2}\right)=(x * x)\left(x^{*} x\right)(x * x)=x^{6}
$$

' $\underline{\wedge}{ }^{\wedge} \underline{\prime}$ ' used as a factor $\underline{3}$ times $\rightarrow$ ' $\underline{x}$ ' used as a factor $\underline{6}$ times

$$
\left(x^{2}\right)^{3}=x^{2 * 3}=x^{6}
$$

Exponent of a Product Property Terms being multiplied inside of parentheses, with an exponent on the parentheses.

$$
\begin{aligned}
& (x y)^{2}=x^{*} y^{*} x^{*} y=x^{*} x^{*} y^{*} y=x^{2} y^{2} \\
& \text { Looks just like Exponent of a Power Property } \\
& \left(x^{2} y^{3}\right)^{4}=x^{8} y^{12}
\end{aligned}
$$

DOES NOT WORK for "exponent of a sum"

$$
\begin{gathered}
(x+3)^{2}=(x+3)(x+3)=x^{2}+6 x+9 \\
(x-3)^{2} \neq x^{2}-3^{2} \\
(x-3)^{2}=x^{2}+6 x+9
\end{gathered}
$$

## Coefficients inside Exponent of a Product

$$
\left(3 x^{3} y^{4}\right)^{2}=\left(3^{1} x^{3} y^{4}\right)^{2}=3^{2} x^{6} y^{8}=9 x^{6} y^{8}
$$

Constants (integer, etc.) usually have an exponent of ' 1 '.
' $x$ ' is a number, we just don't know what it is. You treat all numbers the same (whether they are variables or constants).

$$
\left(3^{3} * 2^{4}\right)^{5}=3^{15} * 2^{20}
$$

Can you multiply the 3 and 2 before removing the exponents?
NO! (PEMDAS)

Simplify
$3 x^{2}\left(4 x^{3}\right)^{2}$
$\rightarrow 3 * x^{2} * 4^{2} * x^{3} \rightarrow 3 * 4^{2} * x^{2} * x^{6} \rightarrow 3 * 16 * x^{2+6} \rightarrow 48 x^{8}$
$\left(2 x^{2}\right)^{5} \rightarrow 2^{5} x^{10} \rightarrow 32 x^{10}$

$$
\begin{aligned}
5(2 x)^{3}\left(3 x^{4}\right)^{2} \rightarrow 5 * 2^{3} * x^{3} * 3^{2} * x^{8} \\
\rightarrow 5 * 8 * 9 * x^{3+8} \rightarrow 360 x^{11} \\
\left(2 y^{5}\right)^{3}=?
\end{aligned}
$$

Watch the negatives! $\left(-x^{3} y^{4}\right)^{2}$
$=\left((-1)^{1} x^{3} y^{4}\right)^{2}$ Turn negative signs into multiplication by -1 .
$=(-1)^{2} x^{6} y^{8}=x^{6} y^{8}$
$\left(-2 x^{2} y^{6}\right)^{3} \quad$ Negative coefficients have an exponent of ' 1 '.

$$
=\left((-2)^{1} x^{2} y^{6}\right)^{3}=(-2)^{3} x^{6} y^{18}=-8 x^{6} y^{18}
$$

simplify

$$
\begin{aligned}
\left(-2 x^{2} y^{4} z\right)^{3} & \rightarrow(-2)^{3} * x^{2 * 3} * y^{4 * 3} * z^{1 * 3} \\
& \rightarrow-8 x^{6} y^{12} z^{3} \\
2\left(-3 m^{4} x^{3}\right)^{3} & \rightarrow 2 *(-3)^{3} * m^{4 * 3} * x^{3 * 3} \\
& \rightarrow 2(-27) * m^{12} * x^{9} \\
& \rightarrow-54 m^{12} x^{9}
\end{aligned}
$$

Negative Exponent Property "Grab and drag"
When you "Grab and drag" the base and its exponent across the "boundary line" between numerator and denominator, you just change the sign of the exponent.

$$
x^{-2}=\frac{1 * x^{-2}}{1}=\frac{1}{x^{2}}
$$

Why did I insert the coefficient of ' 1 ' and denominator of ' 1 '?
If you "grab and drag" the only term in the numerator, the numerator does not disappear, and I needed to create a denominator.

Negative Exponent Property "Grab and drag"
When you "Grab and drag" the base and its exponent across the "boundary line" between numerator and denominator, you just change the sign of the exponent.

$$
\begin{aligned}
& x^{-2}=\frac{1}{x^{2}} \quad \frac{2}{m^{-3}}=\frac{2}{\left.1 * m^{-3}\right)}=\frac{2 m^{3}}{1}=2 m^{3} \\
& \frac{3 y}{2 y^{-4}}=\frac{3 y}{2 *\left(y^{-4}\right.}=\frac{3 y * y^{4}}{2}=\frac{3 y^{5}}{2}
\end{aligned}
$$

Do we "Grab and drag" the coefficient of a base with a negative exponent?
NO! The negative exponent ONLY applies to the base.

Negative Exponent Property "Grab and drag"

$$
\frac{3 y^{4}}{2 y^{2}}=\frac{3 y^{4}}{2 * y^{2}}=\frac{3 y^{4} * y^{-2}}{2}=\frac{3 y^{4-2}}{2}=\frac{3 y^{2}}{2}
$$

Can we use the negative exponent property on positive exponents?
YES! When it crosses the numerator-denominator boundary, it just changes sign ((+ $\rightarrow$-)

This is how we simplify same-based powers that are both in the numerator AND denominator.

$$
\begin{aligned}
& \frac{4 x y^{-2}}{y^{3}}=\frac{4 x^{2}}{y^{3} * y^{2}}=\frac{4 x^{2}}{y^{3+2}}=\frac{4 x^{2}}{y^{5}} \\
& \left(\frac{x^{7}}{x^{3}}\right)^{-2}=\left(\frac{x^{7}}{\left.1 * x^{3}\right)}\right)^{-2}=\left(\frac{x^{7} * x^{-3}}{1}\right)^{-2}=\left(\frac{x^{7-3}}{1}\right)^{-2}=\left(\frac{x^{4}}{1}\right)^{-2} \\
& =\frac{x^{4(-2)}}{1^{-2}}=x^{-8}=\frac{1^{-2}}{x^{8}}=\frac{1}{x^{8}}
\end{aligned}
$$

$$
\begin{aligned}
\left(\frac{x^{7}}{x^{3}}\right)^{-2}= & \left(\frac{x^{7}}{1 * x^{3}}\right)^{-2}=\left(\frac{x^{7} * x^{-3}}{1}\right)^{-2}=\left(\frac{x^{7-3}}{1}\right)^{-2}=\left(\frac{x^{4}}{1}\right)^{-2} \\
& =\frac{x^{4(-2)}}{1^{-2}}=x^{-8}=\frac{x^{2}}{x^{8}}=\frac{1}{x^{8}}
\end{aligned}
$$

"There are many paths to "math Nirvana".
$\left(\frac{x^{7}}{x^{3}}\right)^{-2}=\left(\frac{x^{3}}{x^{7}}\right)^{2}=\left(\frac{1 * x^{3}}{x^{7}}\right)^{2}=\left(\frac{1}{x^{7} x^{-3}}\right)^{2}=\left(\frac{1}{x^{4}}\right)^{2}=\frac{1}{x^{8}}$
Negative Exponent really means:"convert a number (or a power) to its reciprocal (to change the sign of the exponent).

$$
\left(\frac{2 x^{4} y^{2}}{3 x^{3} y^{-3}}\right)^{-2} \rightarrow\left(\frac{x^{-3} y^{3} * 2 x^{4} y^{2}}{3}\right)^{-2} \rightarrow\left(\frac{2 * x^{-3} x^{4} * y^{3} y^{2}}{3}\right)^{-2}
$$

$$
\left(\frac{2 x y^{5}}{3}\right)^{-2} \rightarrow\left(\frac{3}{2 x y^{5}}\right)^{2} \rightarrow \frac{9}{4 x^{2} y^{10}}
$$

## Negative Exponent Property

Possible errors

$$
4 x^{-2}=\frac{4 \cdot x^{-2}}{1} 2=\frac{4}{x^{2}}
$$

When you "Grab and drag" the base and its exponent across the "boundary line" between numerator and denominator, you just change the sign of the exponent.

DO NOT GRAB the coefficient! $\quad \frac{4 * x^{-2}}{1} \neq \frac{1}{4 x^{2}}$

Negative Exponent Property Possible errors


The Negative Exp. Prop. Changes the sign of the exponent NOT the sign of the coefficient!

It's better to think of -4 as $(-1)^{*} 4$ so you don't get tempted to "drag" negative coefficients.

$$
-4=\frac{-1 * 4}{1}
$$

## Zero Exponent Property

Any base raised to the zero power simplifies to one.
$10^{3}=1000$
$2^{3}=8$
$10^{2}=100$
$2^{2}=4$
$10^{1}=10$
$2^{1}=2$
$2^{0}=1$

$$
\begin{gathered}
2^{0}=1 \\
(2 x)^{0}=1 \\
2 x^{0}=2 * 1=2
\end{gathered}
$$

$10^{0}=1$
Multiply Powers Property
$x^{3} x^{0}=x^{3+0}=x^{3}$
If you got a different result from two properties, then one of the properties is a "lie" since properties guarantee equivalence.

