Math-2A

Lesson 2-5: Powers (part 2)

1) Multiply Powers Property of Exponents: when you multiply "same based powers" you just add the exponents.

Properties are "short-cuts" that give you an equivalent expression (or equation)

Simplify

$$
\begin{aligned}
& 3 x^{2}\left(4 x^{3}\right) \quad \begin{array}{l}
\text { You can re-arrange the order of } \\
\text { multiplication (Commutative Property) }
\end{array} \\
& \rightarrow 3 * 4 * x^{2} * x^{3}
\end{aligned}
$$

$$
\rightarrow 12 x^{5} \quad \frac{\text { Coefficients of the powers are handled }}{\text { conaratoly }}
$$

separately from the base and the exponent.

$$
-2 x^{3}\left(3 x^{5}\right) \rightarrow-2 * 3 * x^{3} * x^{5} \rightarrow-6 x^{8}
$$

$$
-m^{2}\left(-4 m^{6}\right)\left(5 m^{3}\right) \rightarrow-1 *(-4) * 5 * m^{2} * m^{6} * m^{3}
$$

$$
\rightarrow \quad 20 m^{11}
$$

Simplify

$$
\begin{array}{ll}
\left(5 x^{2}\right)\left(2 x^{3}\right) & \rightarrow 10 x^{5} \\
2 x^{3} * \frac{1}{2} x^{2} & \rightarrow x^{5}
\end{array}
$$

Exponent of a Power Property of Exponents $\left(x^{2}\right)^{3}$
What is the "base" for the exponent 3 ? $\left(x^{2}\right)$
How many times is $x^{\wedge} 2$ used as a factor?
$\left(x^{2}\right)^{3} \rightarrow x^{2} * x^{2} * x^{2} \rightarrow x^{*} x^{*} x^{*} x^{*} x^{*} x$
$\left(x^{2}\right)^{3}=$ ' x ' used as a factor six times $=x^{6}$
$\left(x^{2}\right)^{3}=x^{2 * 3}=x^{6}$
When you raise a power to another power ("power of a power") you multiply the exponents.

Exponent of a Product Property of Exponents $(x y)^{2}$

What is the "base" for the exponent 2?
Base '(xy)' used as a factor 2 times

$$
\begin{aligned}
& \rightarrow(x y)(x y) \quad \rightarrow x^{*} y^{*} x^{*} y \quad \rightarrow x^{*} x^{*} y^{*} y \\
& \rightarrow x^{2} y^{2} \quad(x y)^{m}=x^{m} y^{m}
\end{aligned}
$$

This makes it seem like you can "distribute" in the exponent. This only works with the power of a product!!

$$
(x-y)^{2} \neq x^{2}-y^{2}
$$

You must use the distribute property (twice) for a sum!!!

$$
\begin{gathered}
(x-y)^{2}=(x-y)(x-y) \\
\rightarrow x^{2}-2 x y+y^{2}
\end{gathered}
$$

Simplify

$\left(3 x^{3} y^{4}\right)^{2}$
$\rightarrow\left(3^{1} x^{3} y^{4}\right)^{2}$
Constants (integer, etc.) have an exponent of ' 1 '.
$\rightarrow 3^{2} x^{6} y^{8}$
$\left(3^{a} x^{b} y^{c}\right)^{m}=3^{a m} x^{b m} y^{c m}$

What is the difference between?

$$
\begin{aligned}
& (x)^{4} \text { and } \mathrm{x}^{4} \\
& \left(x^{2}\right)^{3} \text { and }\left(x^{3}\right)^{2} \\
& x^{4} x^{3} \text { and } x^{3} x^{4} \\
& (x+1)^{2} \text { and }(x+1)(x+1)
\end{aligned}
$$

Simplify

$$
\begin{array}{ll}
\left(x^{2}\right)^{5} & \rightarrow x^{10} \\
5(x)^{3} x^{4} & \rightarrow 5 x^{7} \\
3\left(2 y^{5}\right)^{3} & \rightarrow 3^{1} * 2^{3} * y^{15} \rightarrow 24 y^{15}
\end{array}
$$

Watch the negatives! $\left(-x^{3} y^{4}\right)^{2}$
$=\left((-1)^{1} x^{3} y^{4}\right)^{2} \quad$ Turn negative signs into multiplication by -1.
$=(-1)^{2} x^{6} y^{8} \quad$ This way you will be able to tell if the simplified version is positive or negative.
$=x^{6} y^{8}$
$\left(-2 x^{2} y^{6}\right)^{3} \quad$ Negative coefficients have an exponent of ' 1 '.
$=\left((-2)^{1} x^{2} y^{6}\right)^{3}$
$=(-2)^{3} x^{6} y^{18}$
$=-8 x^{6} y^{18}$
A negative number raised to an odd exponent remains negative.

Simplify

$$
\left(-3 x^{2}\right)^{3} \quad \rightarrow-27 x^{6}
$$

$$
\left(-w x^{3}\right)^{5} \quad \rightarrow-w^{5} x^{15}
$$

$$
\left(-2 x^{3}\right)^{4} \quad \rightarrow 16 x^{12}
$$

$$
\begin{aligned}
\left(-2 x^{2} y^{4} z\right)^{3} & \rightarrow-8 x^{6} y^{12} z^{3} \\
2\left(-m^{4} x^{3}\right)^{5} & \rightarrow-2 w^{20} x^{15} \\
-3\left(-2 x^{2} y z^{3}\right)^{4} & \rightarrow-48 x^{12}
\end{aligned}
$$

