Math-2A

 Lesson 2-2

 Lesson 2-2}

Imaginary Numbers

What number systems does -3 belong to?

What number systems does $\sqrt{5}$ belong to?

What number systems does
$\underline{6}$ belong to?
2

Vocabulary

imaginary numbers: a number that includes the square root of a negative number. They are not on the number line!

$$
\sqrt{-1}
$$

$i \sqrt{3}$
$\sqrt{-2}$
real numbers: a number that can be found on the number line.

Think of the complex numbers as the "universe of numbers".

COMPLEX NUMBERS

$$
i=\sqrt{-1}
$$

If we apply the Property of Equality (square both sides)

$$
i^{2}=-1
$$

ALWAYS replace i^{2} with -1 . Why?
Rewrite the following so that there are NO negatives under the square root symbol and NO i^{2} 's.

$$
\begin{array}{rlrl}
\sqrt{-5} & \rightarrow i \sqrt{5} \quad 5-2 \sqrt{-3} & \rightarrow 5-2 i \sqrt{3} \\
3 \sqrt{-5} & \rightarrow 3 i \sqrt{5}-2 i^{2} \sqrt{-3} & \rightarrow-2(-1) \sqrt{3} \\
-4 \sqrt{-5} & \rightarrow-4 i \sqrt{5} & & \rightarrow 2 \sqrt{3}
\end{array}
$$

New number systems are needed when a number system is not "closed" for a particular operation (the square root of -1)

What number system is closed for all operations?

The Complex Number System.
$a+b i$

Real number

Imaginary number

Adding and Subtracting Complex \#'s

Real) numbers are NOT "like terms" with imaginary numbers.

$$
(2-3 i)-(-4-5 i)=? \quad 6+2 i
$$

$$
7 \mathrm{i}-(2-3 \mathrm{i})=? \quad-2+10 \mathrm{i}
$$

$$
\begin{aligned}
& a-3 i=4+b i \quad a=4, b=-3 \\
& a=?, b=?
\end{aligned}
$$

Multiplying Complex Numbers

$$
\begin{aligned}
3 i{ }^{*} 4 \mathrm{i} \quad & =3 * i * 4 * i \\
& =3 * 4 * \mathrm{i}^{*} \mathrm{i} \\
& =12 i^{2} \quad i^{2}=-1 \\
& =-12
\end{aligned}
$$

Multiplying Complex Numbers

$$
2(4+3 i)=8+6 i
$$

The distributive property repeated two times.

$$
\begin{aligned}
(4+2 i)(3+5 i) & =4(3+5 i)+2 i(3+5 i) \\
& =12+20 i+6 i+10 i^{2} \\
& =12+26 i+10(-1) \\
& =2+26 i
\end{aligned}
$$

