Math-2A

Lesson 2-13

Factoring Quadratics with Lead
Coefficient Not = 1

When factoring a quadratic expression, what if there is no common factor AND the lead coefficient is NOT equal to 1 ?

$$
a x^{2}+b x+c
$$

(These come from multiplying binomials that also do not have lead coefficients of 1 .)

$$
(2 x+1)(x+3)
$$

Use the "box method" to multiply the binomials

$$
2 x^{2}+7 x+3
$$

	x	3
$2 x$	$2 x^{2}$	$6 x$
1	x	3

Notice a nice pattern when you multiply this out ("simplify")
$(2 x+1)(x+3)$
$2 x^{2}+7 x+3$
"right plus right" does not add up to 7 , but notice something.

$$
2 * 15=30
$$

$$
30=10 * 3
$$

Are there any other factors of 30 that add up to 13 ?
This tells us to break
13 x into $10 \mathrm{x}+3 \mathrm{x}$
$2 x^{2}+13 x+15$
$2 x^{2}+10 x+3 x+15$

These are all of the terms in "the box"

What is the bottom-left term in the box?

$$
x^{*}(3)=3 x
$$

What is the top-right term in the box?

$$
2 x^{*}(5)=10 x
$$

Final check: $3 * 5=15$?
Factored form:

$$
2 x^{2}+13 x+15
$$

$$
\rightarrow(2 x+3)(x+5)
$$

$4 * 10=40$
These are all of the terms in "the box"

$8+5=13$
Other factors of 40 that add up to 13 ?
$40=8 * 5$
This tells us to break
13 x into $8 \mathrm{x}+5 \mathrm{x}$ $4 x^{2}+13 x+10$
$4 x^{2}+8 x+5 x+10$
$4 x^{2}+13 x+10$
Factored form:

$$
\rightarrow(x+2)(4 x+5)
$$

$3 * 8=24$
 These are all of the terms in "the box"

$3 x^{2}+14 x+8$
$2+12=14$ Other factors of 24 that add up to 14 ?

$24=2 * 12$
This tells us to break
14 x into $\underline{2 \mathrm{x}+12 \mathrm{x}}$
$3 x^{2}+14 x+8$
$3 x^{2}+14 x+8$
Factored form:
$\rightarrow(3 x+2)(x+4)$
$3 x^{2}+2 x+12 x+8$

Factor

$$
5 * 4=20
$$

$$
11 *(-9)=
$$

$$
11 x^{2}+2 x-9
$$

	x	2
5 x	$5 \mathrm{x}^{2}$	10 x
2	2 x	4

2 * $10=20$
$\underline{2}+\underline{10}=12$
$(5 x+2)(x+2)$

Factor

