Math-2 Lesson 12-1

Exponential Function

The "Parent" Exponential Function

$$
y=b^{x} \text { exponent }
$$

$y=2^{x}$ (base 2 exponential function)
$y=3^{x}$ (base 3 exponential function)
$y=\left(\frac{1}{2}\right)^{x}$ (base $1 / 2$ exponential function)
The base MUST BE positive and CANNOT equal 1.

$$
b=(0,1) \cup(1, \infty)
$$

What shape does it have?

$f(x)=2^{x}$
Build a table of values for the "nice" domain elements: $-2,-1,0,1,2$.

x	$2^{()}$	y
-2	2^{-2}	0.25
-1		
0		
1		
2		

$$
\left(\frac{2}{1}\right)^{-2}=\left(\frac{1}{2}\right)^{2}
$$

Why does it have this shape? $\quad f(x)=2^{x}$
Build a table of values for the "nice" domain elements: $-2,-1,0,1,2$.

x	$2^{()}$	y
-2	2^{-2}	0.25
-1	2^{-1}	0.5
0	2^{0}	1
1	2^{1}	2
2	2^{2}	4

$$
\left(\frac{2}{1}\right)^{-2}=\left(\frac{1}{2}\right)^{2}=\frac{1}{4}=0.25 \quad \begin{aligned}
& 2^{0}=1 \\
& \text { "zero }
\end{aligned}
$$

"negative exponent property"
exponent property"

Exponential Function $f(x)=2^{x}$

Will the ' y ' value ever reach zero (on the left end of the graph)?
As the denominator gets bigger and bigger, the decimal version of the fraction gets smaller and smaller.

X	$2^{()}$	y	'y' gets closer and closer to zero but y		
			never reaches zero.		
-1	$2^{(-1)}$	1/2	$f(-1)=1 / 2$		
-2	$2^{(-2)}$	1/4	$f(-2)=1 / 4$		
-3	$2^{(-3)}$	1/8	$f(-3)=1 / 8$,
-4	$2^{(-4)}$	1/16	$f(-4)=1 / 16$		-
-5	$2^{(-5)}$	1/32	$f(-5)=1 / 32$		

Horizontal Asymptote: a horizontal line
$f(x)=2^{x}$ the graph approaches but never reaches.

$$
y=0
$$

Domain $=$?

$$
x=(-\infty, \infty)
$$

$$
\text { range }=\text { ? }
$$

$$
y=(0, \infty)
$$

y-intercept $=$?
$f(0)=y$ intercept \leftarrow

$$
f(0)=2^{0}=1
$$

$$
y=b^{x} \quad y_{1}=2^{x} \quad \text { b' }>1 \rightarrow \text { growth }
$$

Exponential Growth: the graph is increasing (as you go from left to right the graph goes upward.

$$
y_{2}=\left(\frac{1}{2}\right)^{x}
$$

$0<$ 'b' $<1 \rightarrow$ decay
Exponential Decay: the graph is decreasing (as you go from left to right the graph
 goes downward.

Decay: Graphs with bases between 0 and $1 \rightarrow$ Base $=(0,1)$

$$
y=b^{x}
$$

What does exponential growth look like?

$$
b>1
$$

For what range of values of ' b ' will result in exponential growth?

What does exponential decay look like?

$$
0<b<1
$$

For what range of values of 'b' will result in exponential decay ?

Up and down shifts of the exponential function.

How far up has the graph been shifted?

Up 1

What is the value of " k " in the equation?

$$
k=1
$$

What is the equation of the graph?

$$
y=3^{x}+1
$$

What is the equation of the horizontal asymptote?

$$
y=1
$$

What is the range of the function?

$$
y=(1, \infty)
$$

$$
y=\left(\frac{1}{2}\right)^{x}
$$

Up and down shifts of the exponential function.

How far has the graph been shifted?

Down 2

What is the value of " k " in the equation?

$$
k=-2
$$

What is the equation of the graph?

$$
y=3^{x}-2
$$

What is the equation of

$$
y=-2
$$ the horizontal asymptote?

What is the range of the function?

$$
y=(-2, \infty)
$$

Can the base be $1 ?$
$f(x)=a b^{x}$
$g(x)=(1)^{x} \quad b \neq 1$

x	y
-1	1
0	
0	1
1	$(1)^{-1}$
1	1

$$
\begin{aligned}
& 0<b<1, \text { OR } \mathrm{b}>1 \\
& b=(0,1) \cup(1, \infty)
\end{aligned}
$$

Can the base be zero?
$g(x)=(0)^{x}$
b $\neq 0$
$f(x)=a b^{x}$

Can the 'base' be negative? $\quad f(x)=a b^{x}$ $g(x)=(-2)^{x}$

$$
\begin{aligned}
& \prime b \text { ' }>1 \rightarrow \text { growth } \\
& 0<\text { 'b'<1 } \rightarrow \text { decay }
\end{aligned}
$$

$\mathrm{b} \neq$ negative numbers

