Math-2A Lesson 10-6: Volumes of Spheres, Cylinders, Cones, Pyramids, and Prisms

What does "volume" mean?

What is the "volume" of the shape? "<u>how many 1 inch cubes will fit in the shape</u>."

 $Volume_{rect.prism} = Area_{base} * height$

What is the "volume" of the shape? "how many 1 inch cubes will fit in the shape."

volume = 8 cubic inches

volume
$$= 8 \operatorname{inch}^3$$

 $Volume_{rect.prism} = Area_{base} * height$

volume = (2 inch)(4 inch)(6 inch)

volume = 48 inch^3 volume = 48 "cubic inches"

What is the "volume" of the prism?

volume = 24 inch³

 $Vol_{cyl} = 502.7 \ in^3$

The <u>volume</u> of a sphere is....?

volume _{sphere} =
$$\frac{4}{3}\pi r^3$$

What part of the formula gives us the "cubic" units?

volume
$$=\frac{4}{3}\pi\left(\frac{6}{2}\right)^3$$

$$vol = 36\pi in^3$$

 $vol = 113.1 in^{3}$

The <u>volume</u> of a sphere is....?

volume _{sphere} =
$$\frac{4}{3}\pi r^3$$

volume
$$=\frac{4}{3}\pi(2.6)^3$$

$$vol = 73.6 in^{3}$$

volume_{prism} = (area of base)*h
volume_{rectangular pyramid} =
$$\frac{1}{3}$$
 (base area)*h*
volume_{cylinder} = (area base)**h*
volume_{cone} = $\frac{1}{3}$ (area base)**h*
surf. area_{sphere} = $4\pi r^2$
volume_{sphere} = $\frac{1}{3}$ * $4\pi r^3$

Where is the center of the circle?

 $x^2 + y^2 = 25$ Has not been shifted left/right \rightarrow center is (0, 0).

 $(x+3)^2 + y^2 = 25$ Left 3 shift \rightarrow center is (-3, 0)

 $(x-5)^{2} + (y+2)^{2} = 25$ center is (5, -2)

What is the radius of the circle? $x^2 + y^2 = 25$ $x^2 + y^2 = r^2$ radius is 5

 $(x-7)^2 + y^2 = 49$ radius is 7

 $(x+2)^2 + y^2 = 64$ radius is 8