Math-2A
 Lesson 10-1 Circles

Transformations of the Square function.

$f(x)=x^{2}$
 Reflection
 across x-axis

$y=-2(x-3)^{2}+4$
Reflected across x-axis,
VSF = 2, right 3, up 4
$y=3(x+5)^{2}-6 \quad \mathrm{VSF}=3$, left 5 , down 6
To convert the equation into a graph:

1) Start with the "parent function"
2) Move the vertex left/right and up/down
3) The shape of the graph depends upon VSF and x-axis reflection.
$y=x^{2} \quad y=(-1) a(x-h)^{2}+k$

reflected across x-axis

$$
f(x)=-5|x-2|+3
$$

VSF=5,

translated right 2 translated up 3

Conic Sections

Hyperbola
Parabola

Circle

Finding the equation of a circle:

What is the radius of the circle?

$$
\begin{gathered}
a^{2}+b^{2}=c^{2} \\
3^{2}+4^{2}=r^{2} \\
9+16=r^{2} \\
25=r^{2} \\
r=5
\end{gathered}
$$

Now I will pick a random point on the circle.

What is the equation for the radius of the circle when the point is (x, y) ?

$$
x^{2}+y^{2}=r^{2}
$$

This is the general equation for a circle centered at (0,0)!!!

This is the equation of a circle centered at the origin whose radius is 5 .

$$
\begin{aligned}
& x^{2}+y^{2}=r^{2} \\
& x^{2}+y^{2}=5^{2} \\
& x^{2}+y^{2}=25
\end{aligned}
$$

What is the equation of this circle?
What is the maximum x-value?
$x^{2}+y^{2}=3^{2}$
$x^{2}+y^{2}=9$
What is the y-value when $x=3$?
$(3)^{2}+y^{2}=9$
$9+\mathrm{y}^{2}=9$

$$
y=0
$$

What is the domain? $\quad \mathrm{x}=[-3,3]$ What is the range? $\quad y=[-3,3]$

$$
x^{2}+y^{2}=9
$$

What are the y-values when $x=2$?
$(2)^{2}+y^{2}=9$
$4+y^{2}=9$
$y^{2}=5$
$y= \pm \sqrt{5}$

How an Equation Makes a Circle.

$x^{2}+y^{2}=25 \quad$ How do you graph this on your calculator??!!!
$y^{2}=25-x^{2} \quad$ Your turn, solve for ' y '
$y=\sqrt{25-x^{2}}$
Graph this equation on your calculator. Why do you only get the top half?
$y=-\sqrt{25-x^{2}}$
Also Graph this equation on your calculator. Why is the circle "squished"?

The physical width of the calculator window is wider than the calculator window height so you can't use the same "window" numbers for both.
To reflect the physical dimensions of the calculator window, use "Zoom Square".

Now we just plug in number to both equations.

$$
\begin{array}{cc}
x^{2}+y^{2}=4 & y=-\sqrt{4-0^{2}}=-2 \\
y=\sqrt{4-x^{2}} & y=\sqrt{4-0^{2}}=2 \\
y=-\sqrt{4-x^{2}} & y=\sqrt{4-1^{2}} \approx 1.7 \\
& y=-\sqrt{4-1^{2}} \approx-1.7
\end{array}
$$

More inputs result in more outputs.

Each input will give a "+' and a "-" output.

$$
\begin{gathered}
y=\sqrt{4-1 / 3}{ }^{2} \approx 1.97 \\
y=-\sqrt{4-1 /^{2}} \approx-1.97
\end{gathered}
$$

(except for the
input 2 and -2)

\mathbf{x}	\mathbf{y}
0	-2
0	2
1	$\sqrt{3} \approx 1.7$
1	$-\sqrt{3} \sim-1.7$
$1 / 3$	≈ 1.97
$1 / 3$	≈-1.97
2	0
-2	0

What is the equation of the circle?

$$
\begin{aligned}
& x^{2}+y^{2}=r^{2} \\
& x^{2}+y^{2}=6^{2} \\
& x^{2}+y^{2}=36
\end{aligned}
$$

Graphical Transformations

Parent Function: The simplest function in a family of functions (lines, parabolas, cubic functions, etc.)

$$
f(x)=x^{2}
$$

$$
g(x)=(x-2)^{2}
$$

How is $g(x)$ a transformation of $f(x)$?

Replacing ' x ' with ' $x-2$ ' translates
the parent function right by 2.
$f(x)=x^{2}$

How is $h(x)$ a transformation of $f(x)$?

Up 2

Notice: Subtract 2 from both sides yields:

$$
\begin{gathered}
y-2=x^{2} \\
(y-2)=x^{2}
\end{gathered}
$$

Replace " y " in the parent function with $(y-2)$ moves the graph up 2.
$y=(x-2)^{2}$

Replacing ' x ' with $(x-2)$ moves the parent function right by 2.

$$
(y-2)=x^{2}
$$

Replace " y " with $(y-2)$ moves the parent
function up by 2 .

$$
x^{2}+y^{2}=9
$$

What is the domain?

$$
x=[-3,3]
$$

What is the range?

$$
y=[-3,3]
$$

How do we change the equation to translate the graph right 2 ?
Replace ' x ' with $(x-2)$

$$
(x-2)^{2}+y^{2}=9
$$

What is the domain?

$$
x=[-1,5]
$$

What is the range?

$$
y=[-3,3]
$$

How do we change the equation to translate the graph down 2?
$x^{2}+y^{2}=9$
Replace ' y ' with $(y+2)$
$x^{2}+(y+2)^{2}=9$

What is the domain?

$$
x=[-3,3]
$$

What is the range?

$$
y=[-5,1]
$$

What is the radius and center of the circle?
$x^{2}+y^{2}=25$ radius is $5 \quad$ No left/right or up/down shift
\rightarrow center is (0,0).

$$
(x+3)^{2}+y^{2}=25 \quad \text { Left } 3 \text { shift } \rightarrow \text { center is }(-3,0)
$$

$(x-5)^{2}+(y+2)^{2}=25$ Right 5 , down 2 shift \rightarrow center is (5, -2)
$(x-7)^{2}+y^{2}=49 \quad$ radius is 7
Right 7 shift $\quad \rightarrow$ center is $(7,0)$
$(x+3)^{2}+(y-4)^{2}=5 \quad$ radius $=\sqrt{5}$
Left 3 , up 4 shift $\quad \rightarrow$ center is $(-3,4)$

Equations of Circles

 of the circle.
(h, k) is the center of the circle.
$9=(x-3)^{2}+(y+4)^{2} \quad ' r \prime=? \quad(h, k)=?$

$$
r=3 \quad \text { center is }(3,-4)
$$

$$
3=(x+2)^{2}+(y-1)^{2} \quad \text { 'r' }=? \quad(\mathrm{~h}, \mathrm{k})=?
$$

$$
r=\sqrt{3} \quad \text { center is }(-2,1)
$$

Equations of Circles

$$
r^{2}=(x-h)^{2}+(y-k)^{2}
$$

' r ' is the radius of the circle.
(h, k) is the center of the circle.

$$
\begin{array}{cr}
\prime r \prime=? & ' r '=1 \\
(h, k)=? & (h, k)=(-1,1)
\end{array}
$$

$$
\begin{gathered}
1^{2}=(x-(-1))^{2}+(y-1)^{2} \\
1=(x+1)^{2}+(y-1)^{2}
\end{gathered}
$$

Write the equation of a circle centered at $(0,3)$ with a radius of 4 .

$$
x^{2}+(y-3)^{2}=16
$$

Write the equation of a circle centered at $(3,-2)$ with a radius of 6 .

$$
(x-3)^{2}+(y+2)^{2}=36
$$

Write the equation of a circle centered at $(-2,-4)$ with a radius of SQRT(5).

$$
(x+2)^{2}+(y+4)^{2}=5
$$

$$
(x-5)^{2}+(y-7)^{2}=25
$$

Is the point $(9,4)$ on the circle?
Plug in $x=9, y=4$
$(9-5)^{2}+(4-7)^{2}=25$
$(4)^{2}+(-3)^{2}=25$
$16+9=25$
Yes $(9,4)$ is on the circle.

