Lesson 1-3: The Distributive Property (of multiplication over addition)

When multiplying a factor and the sum of two or more addends, the factor can be distributed to each of the addends.

$$
\int_{\text {ctor Addends }}^{2(x+4) \rightarrow 2 x+2(4)} \rightarrow 2 x+8
$$

Your Turn: Use the distributive property to simplify the expression

$$
\begin{gathered}
4(x+5) \\
-3(x-4) \\
5(3 x-2)
\end{gathered}
$$

Negative Number

A number that is the same distance from zero on the number line as the positive number, but is on the opposite side of zero.

3 And -3 are the same distance from zero.
-3 is the "opposite" of 3
Multiplication by (-1) will change any number to its "opposite" (sign)
$-1(3)=$ \qquad $-2(-3)(-4)=$ \qquad $-1(x+3)=$ \qquad
$-1(-2)=$ \qquad $-5=(-1)^{*}$ \qquad $-(x-4)=$ \qquad

Solving Equations using the Distributive Property

$$
3(5 x-6)=12
$$

Can we use the addition property of equality to add ' 6 ' (left/right)?

$3(5 x-6)$	12
+6	12
+6	

PEMDAS: you must

\rightarrow| $15 x-18$ | 12 |
| ---: | :---: |
| +18 | +18 |
| $15 x$ | $=30$ |
| $\div 15$ | $\div 15$ |
| x | $=2$ |

multiply (to remove the
parentheses) before you
can subtract from the
parentheses.

Your turn: Solve the following equations
(Get rid of parentheses $1^{\text {st }}$ using the distributive property.)

$$
\begin{gathered}
4(5-4 m)=-12 \\
-6(-6+4 x)=12
\end{gathered}
$$

Another example

$$
\begin{aligned}
& 3(x-2)=4(-x+1) \\
& \rightarrow 3 x-6=4(-x+1)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Your Turn: Solve using the Distributive Property } \\
& 2(x+3)=2(2 x-1) \\
& -5(x+2)=(2 x-7) \\
& (x+3)-3(3 x-2)=1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Your turn: Solve the following equations } \\
& 2 x-3=4-3(1+2 x) \\
& 2(2 x+4)=5-(2 x-5) \\
& 3 x-(2 x-3)=5(2 x-3)-3 x
\end{aligned}
$$

$$
\begin{aligned}
& \text { Checking the solution of a multi-variable equation } \\
& \begin{array}{ll}
x=0 & 3 x+4 y+2 z=12 \\
y=2 & 3(0)+4(2)+2(2)=12 \\
z=2 & \text { There are infinitely } \\
\text { many combinations. } \\
x=4 & 3(4)+4(0)+2(0)=12 \\
y=0 & \\
z=0 & \\
x=2 & 3(2)+4(1)+2(2) \neq 12 \\
y=1 & \\
z=2 &
\end{array}
\end{aligned}
$$

Solving a multi-variable equation

$$
3 x+4 y+2 z=12
$$

Could you find the value of ' x ' if I gave you the values of ' y ' and ' z ' ?

$$
\begin{aligned}
& 3 x+4 y+2 z=12 \\
& 3 x+4()+2()=12 \\
& 3 x+4(1)+2(2)=12 \\
& 3 x+4+4=12 \\
& 3 x+8=12 \\
& \quad 3 x=4 \quad x=\frac{3}{4}
\end{aligned}
$$

$\mathrm{x}=$
$y=1$
$z=2$

Vocabulary

Solve the single unknown equation: Use properties of equality to rewrite the equation as an equivalent equation with the unknown value on one side of the equal sign and a number on the other side.

Solve for a variable (more then one variable in the equation): Use properties of equality to rewrite the equation as an equivalent equation with the specified variable on one side of the equal sign and all other terms on the other side.

$$
\text { Solve for "x" } \begin{array}{r|r}
x+1 & =5 \\
-1 & -1 \\
\hline x & =4
\end{array}
$$

Solve a single unknown equation: Use properties of equality to rewrite the equation as an equivalent equation with the unknown value on one side of the equal sign and a number on the other side.

Another way to Solve for ' x	
$4+2 x+4 y$	$=6$
$\div 2$	$\div 2$
$2+x+2 y$	$=3$
$-2 y$	$-2 y$
$2+x$	$3-2 y$
-2	-2

Solve for the variable: Use properties of equality to rewrite the equation as an equivalent equation with the specified variable on one side of the equal sign and all other terms on the other side.

Solve for ' x '		Solve for the specified variable: Use properties of equality to rewrite the equation as an equivalent equation with the specified variable on one side of the equal sign and all other terms on the other side.
$\left\lvert\, \begin{array}{r} 4+2 x+4 y \\ -4 \\ \hline 2 x+4 y \\ -4 y \end{array}\right.$	6 -4	
	$\begin{aligned} & 2 \\ & -4 y \end{aligned}$	
$2 x$ +2	$\begin{aligned} & 2-4 y \\ & \div 2 \end{aligned}$	
	$\frac{2-4 y}{2}$	
	$\frac{2}{2}-\frac{4 y}{2}$	
	$-2 y$	

$$
\begin{aligned}
& \text { Your turn: Solve for ' } \mathrm{k} \text { ' } \\
& \begin{array}{l}
2 k-3 m=5 \\
\frac{7 k-3 y}{2}=4 x \\
4 m-3 k y=7
\end{array}
\end{aligned}
$$

