Math -2: Lesson 1-6 (Absolute Value Equations)

3 And -3 are the same distance from zero.
-3 is the "opposite" of 3
Absolute Value of a number: $|x|$ The distance the number is from zero on the number line.

$$
|3|=3 \quad|-3|=3
$$

Absolute Value of a number: $|x|$ The distance the number is from zero on the number line.
$|x|=3 \rightarrow|3|=3 \quad|-3|=3 \rightarrow x=3,-3$
Means: "what numbers are a distance of three units from zero on the number line?"

What is the solution to the equation?
$|x|=-5 \quad$ Means: "what numbers are a distance of neqative five units from zero on the number line?"
What is the solution?
Is distance ever negative?
$|x|=-5 \quad$ Has no solution.

Absolute Value: $|x-c|=d$ The number " d " is the distance between " x ' and " c " on the number line.

$$
|x-(c)|=d
$$

"c" is the "center number" and
" d " is the distance from the center number.

$$
\begin{array}{cc}
|x-3|=2 & \begin{array}{c}
\text { (English): What numbers are exactly } \\
2 \text { units from the center number " } 3 \text { "? }
\end{array} \\
x=3 \pm 2 \\
x=1,5
\end{array}|x-(+3)|=2
$$

$$
\begin{array}{ccc}
|x+6|=3 & \begin{array}{c}
\text { (English): What numbers are exactly } \\
3 \text { innits from the center number "-6"? } \\
x=-6 \pm 3 \\
x=-9,-3
\end{array}|x-(-6)|=3
\end{array}
$$

$$
\left.\begin{array}{cc}
|x-4|=5 & \begin{array}{c}
\text { (English): What numbers are exactly } \\
5 \text { units from the center number " } 4 \text { "? }
\end{array} \\
x=4 \pm 5 \\
|x-(+4)|=5
\end{array} \right\rvert\,
$$

Solve the equations. Draw a picture if necessary.

$$
\begin{aligned}
& |x+1|=3 \\
& |x-4|=5 \\
& |x-5|=1
\end{aligned}
$$

Another way to think about it

Another way to think about it.

$$
\begin{gathered}
|x+4|=5 \\
|-5|=5 \\
\begin{array}{c}
|5|=5 \\
x+4=-5
\end{array} \\
x=-9
\end{gathered}
$$

For some problems, this is a better way to think about it.

Solve $\quad|x-10|=-4$
This distance between ' x ' and ' 10 ' is negative 4.

The absolute value always equals a positive number.

Distances are NOT negative.

No solution!!!!

Solve algebraically

\[

\]

