Math-2A Lesson 1-4 (Linear Inequalities)

$x>11$ "all the numbers that are greater than 11"
(shade all \#'s that are solutions)
Number line equivalent:

What does the following inequality mean?
$x \leq 5 \quad$ "all the number that are less than or equal to 5 "
What is the number line equivalent of $x \leq 5$?

$x>11$

$11>11$ is a false statement
$x=11$ is NOT a solution. We DO NOT shade 11 .
$x \leq 5$

$x=5 \quad$ IS a solution. We shade 5 .

Start with the following:

$$
\begin{array}{cc}
5>3 & \text { True or false? } \\
+2+2 & \text { Add } 2 \text { left and right (of the " }>\text { " symbol) and rewrite } \\
7>5 & \text { True or false? }
\end{array}
$$

This will always work for addition.
Addition Property of Inequality: adding the same number left and right of the " $<,>$, \leq, or \geq " symbol will result in an equivalent inequality.

Start with the following:
$2<6 \quad$ True or false?
-1 -1 Subtract "1" left and right (of the " $<$ " symbol) and rewrite
$1<5 \quad$ True or false?
This will always work for subtraction.
Subtraction Property of Inequality: subtracting the same number left and right of the " $<,>$, \leq, or \geq " symbol will result in an equivalent inequality.

Start with the following:

$3<5 \quad$ True or false?
*2 *2 Multiply by "2" left and right (of the "<" symbol), rewrite $6<10 \quad$ True or false?

This works for multiplication of positive numbers, BUT.....

$$
\begin{array}{cc}
& \text { Start with the following: } \\
6<8 & \text { True or false? } \\
-1 & -1 \\
-6<-8 & \text { Multiply by "-1" left and right (of the " }<\text { " symbol), rewrite } \\
\text { True or false? } \quad-6>-8
\end{array}
$$

This will work for multiplication of negative numbers if we reverse the direction of the inequality.

Multiplication Property of Inequality: multiplying the same positive number left and right of the " $<,>$, \leq, or \geq " symbol will result in an equivalent inequality. We reverse the direction of $<,>, \geq$, and \leq if the factor is negative.

$x \leq-3$

Your turn: Solve the inequalities (one step-rewrite)

$$
2 x+2 \leq 6 \quad 2(x-3) \geq 8
$$

$-14<-5 x+6$

Draw the equivalent number line for each solution.

Solving inequalities (variable on both sides of a single inequality symbol)

$\begin{aligned} & 3 x+1 \\ & -2 x \end{aligned}$	$\begin{aligned} & 2 x+6 \\ & -2 x \end{aligned}$	(Subtraction Property Of Inequality
$x+1$	6	
-1	-1	(Subtraction Property Of Inequality
$x \leq$		

Solving inequalities requiring the Distributive Property Review:
(Distributive Property of Multiplication "over" Addition
$2(x+4) \rightarrow 2 x+2(4) \rightarrow \underline{2 x+8}$
$\begin{array}{cc}2(x-4)<4 x+6 & -14<2 x \\ 2 x-8<4 x+6 & (\div 2)\end{array}$
$-2 x-2 x \quad-7<x$ $-8<2 x+6$ $-6 \quad-6 \quad x>-7$ $-14<2 x$

Your turn: Solve the inequality

$$
2 x-6 \leq 3-x \quad 18+2 x \geq 9 x+4
$$

$$
5(x-2)<5 x+6
$$

Draw the equivalent number line for each solution.

