

Vocabulary

<u>Linear Equation</u>: an equation where all of the letters (either <u>variables</u> or <u>unknown values</u>) have NO EXPONENTS.

4x - 2 = 6 2x + 3y = 6

Previous Vocabulary

<u>Solution to an equation</u>: the value of the <u>variables</u> or <u>unknown value</u> that makes the equation "true".

Equivalent equation: has the same solution as the original equation:

4x + 2 = 10 4x = 8

The solution to both equations is x = 2.

They are equivalent equations.

<u>Properties of Equality</u> Only apply to equations!!!

Addition Property of Equality

Subtraction Property of Equality

Multiplication Property of Equality

Division Property of Equality

"+, -, x, \div " by the same number on both sides of the equal sign and you are guaranteed that the next equation is an equivalent equation.

Let's make it faster \rightarrow only identify the specific property of equality only. Why did both methods give the same solution? Using properties guarantees equivalent equations. 2x - 3 = 21Which "path" was easier? +3 Addition Property of Equality +3 Turn constant addends into zeroes 1st Then Turn coefficients into ones. 2x = 24 ÷2 ÷2 Division Property of Equality Equivalent equation to the both 12 x ‡ equations above. Turn coefficients into ones and addends into zeroes so that they disappear!

Your turn: solve using "1 step—rewrite—justify" (but you only have to identify the correct property of equality to make it quicker) 1. 2 = 3 + x 2. 12 - x = 3x3. -27 = 2x - 3 + 2x

Your turn:
4.
$$\frac{x}{3} = -2$$

5. $\frac{2x}{5} = 4 = -8$
6. $3x - 8 = 1$