Math-2A
 Lesson 4-10

The Absolute Value Function

Transformation: an adjustment made to the parent function that results in a change to the graph of the parent function.

Changes could include:
shifting the graph up or down,
Shifting the graph left or right
vertical stretching or shrinking
Reflecting across x-axis or y-axis

Absolute Value Function

$$
f(x)=|x|
$$

Build a table of values for each equation for domain elements: $-2,-1,0,1,2$.

x	y
-2	2
-1	1
0	0
1	1
2	2

$f(x)=|x|$
$g(x)=-|x|$

$x-$	y
-2	-2
-1	-1
0	0
1	-1
2	-2

Multiplying the parent function by -1 reflects it across the x-axis.
What is the vertex?

$f(x)=|x| \quad g(x)=|x|+2$

\mathbf{x}	y
-2	4
-1	3
0	2
1	3
2	4

Adding 2 to the parent function causes the graph to translate up 2
What is the vertex?

$$
f(x)=|x| \quad g(x)=|x-1|
$$

Replacing ' x ' in the parent function with ' x 1' causes the graph to translate right '1'

What is the vertex?

What is the transformation to the parent function?
$y=|x|$
$y=|x-3|$
$y \underset{\bar{v}-2|x|}{2}$

$y=2|x-1|$
$V S F=2$, right 1

$y=|x+1|-4 \quad y=-2|x-3|+4$
left 1 , down 4 reflect $x, V S F=2$, right 3 , up 4

$f(x)=-|x|$ Reflection across x -axis

To compare the equation to the graph: $f(x)=|x|$

1) Move the vertex left/right and up/down

Vertex has moved left 2 and up 4. $\quad g(x)=|x+2|+4$

2) Shape of the graph: from the vertex move right 1, then up/down by the VSF.
From the Vertex move right 1, then to reach the graph you must move down 3
Reflect x-axis, VSF=3.

$$
g(x)=-3|x+2|+4
$$

