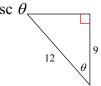
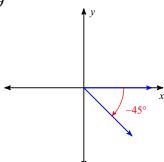

© 2020 Kuta Software LL C. All rights reserved.

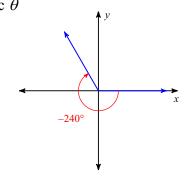

Math-1060 Chapter 4 Review HW

Find the value of the trig function indicated. Do not give these values in decimal form. I want them in fraction form with simplified radicals (if applicable).

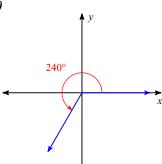
1) $\cos \theta$

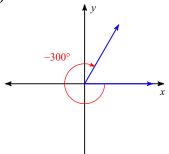


2) c



Find the exact value of each trigonometric function.


3) $\sec \theta$


4) $\csc \theta$

5) $\tan \theta$

6) $\sin \theta$

7) If the sine, cosine, and tangent ratios are defined based upon the sides of right triangles, how do we figure out these ratios for angles that are outside of the range $0 \le \theta \le 90$? (3 requirements)

- 8) a) What is a reference angle?
 - b) What is a standard position angle?
 - c) What is the minimim and maximum values that a reference angle can take on?
 - d) What is the minimum and maximum values that a standard position angle can take on?

- 9) The sine ratio of an angle is $\frac{7}{8}$. If the terminal side of the angle is in quadrant II:
 - a) What is the measure of the reference angle? (to the nearest 1/10th of a degree)
 - b) What is the measure of the standard position angle? (round to the 1st decimal place)
 - c) Find the cosine ratio for this angle.

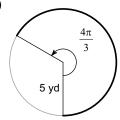
- 10) The terminal side of an angle passes through the point (-3, -10)
 - a) What is the measure of the reference angle?
 - b) What is the measure of the standard position angle?
 - c) Find the sine ratio for this angle.
 - d) Find the cosine ratio for this angle.

Convert each degree measure into radians.

11) 335°

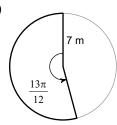
Convert each radian measure into degrees.

12) $\frac{10\pi}{9}$


Find a positive and a negative coterminal angle for each given angle.

13) 310°

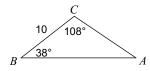
14)
$$\frac{10\pi}{9}$$


Find exact length of each arc (leave π in your answer).

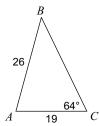
15)

Find the exact area of each sector (leave π in your answer).

16)



- 17) A race car is moving at a constant speed around a circular track whos diameter is 4 miles. Assuming the care is traveling at a constant speed, if the car completes 9 laps in 43 minutes, what is the linear speed of the car to the nearest 1/10th mile per hour. Use 3.14 for π .
- 18) An automated lighthouse flashes its light every 8 seconds. Since the light is on constantly, the flash is due to a person seeing the direction beam of the light as it rotates through 360 degrees every 8 seconds.
 - a) What is the angular speed of the light in radians?
 - b) What is the angule speed of the light in degrees?


- 19) A child spinning a ball at the end of a 6 foot string. If the ball travels makes 46 revolutions per minute, what is the ball's:
 - a) Angular speed in radians per second? (Give your answer as an exact fraction.)
 - b) Linear speed in feet per second? (leave your answer as a fraction)

Find each measurement indicated. Round your answers to the nearest tenth.

20) Find AB

21) Find $m \angle B$

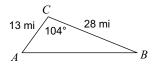
Solve each triangle (Find the measures of all missing angles and all missing sides). Round your answers to the nearest tenth.

22)
$$m \angle B = 64^{\circ}$$
, $a = 30$, $b = 29$

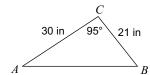
State the number of possible triangles that can be formed using the given measurements.

23)
$$m \angle B = 22^{\circ}$$
, $a = 35$ cm, $b = 26$ cm 24) $m \angle B = 136^{\circ}$, $a = 17$ in, $b = 27$ in

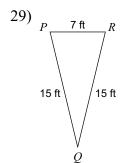
24)
$$m \angle B = 136^{\circ}$$
, $a = 17$ in, $b = 27$ in

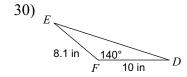

25)
$$m \angle C = 157^{\circ}$$
, $b = 22$ in, $c = 18$ in

Find each measurement indicated. Round your answers to the nearest tenth. Hint: Draw the picture. If you have the ambiguous case, you must determine how many triangles are possble. For two triangles the angle will have two different measures.


26)
$$m \angle B = 54^{\circ}$$
, $a = 28$ ft, $b = 25$ ft Find $m \angle C$

Find each measurement indicated. Round your answers to the nearest tenth.


27) Find $m \angle A$



28) Find AB

Find the area of each triangle to the nearest tenth.

