Find the value of the trig function indicated. Do not give these values in decimal form. I want them in fraction form with simplified radicals (if applicable).

1) $\cos \theta$

2) $\csc \theta$


Find the exact value of each trigonometric function.
3) $\sec \theta$

4) $\csc \theta$

5) $\tan \theta$

6) $\sin \theta$

7) If the sine, cosine, and tangent ratios are defined based upon the sides of right triangles, how do we figure out these ratios for angles that are outside of the range $0 \leq \theta \leq 90$ ? (3 requirements)
8) a) What is a reference angle?
b) What is a standard position angle?
c) What is the minimim and maximum values that a reference angle can take on?
d) What is the minimum and maximum values that a standard position angle can take on?
9) The sine ratio of an angle is $\frac{7}{8}$. If the terminal side of the angle is in quadrant II:
a) What is the measure of the reference angle? (to the nearest $1 / 10$ th of a degree)
b) What is the measure of the standard position angle? (round to the 1st decimal place)
c) Find the cosine ratio for this angle.
10) The terminal side of an angle passes through the point $(-3,-10)$
a) What is the measure of the reference angle?
b) What is the measure of the standard position angle?
c) Find the sine ratio for this angle.
d) Find the cosine ratio for this angle.

## Convert each degree measure into radians.

11) $335^{\circ}$

Convert each radian measure into degrees.
12) $\frac{10 \pi}{9}$

Find a positive and a negative coterminal angle for each given angle.
13) $310^{\circ}$
14) $\frac{10 \pi}{9}$

## Find exact length of each arc (leave $\pi$ in your answer).

15) 



## Find the exact area of each sector (leave $\pi$ in your answer).

16) 


17) A race car is moving at a constant speed around a circular track whos diameter is 4 miles. Assuming the care is traveling at a constant speed, if the car completes 9 laps in 43 minutes, what is the linear speed of the car to the nearest $1 / 10$ th mile per hour. Use 3.14 for $\pi$.
18) An automated lighthouse flashes its light every 8 seconds. Since the light is on constantly, the flash is due to a person seeing the direction beam of the light as it rotates through 360 degrees every 8 seconds.
a) What is the angular speed of the light in radians?
b) What is the angule speed of the light in degrees?
19) A child spinning a ball at the end of a 6 foot string. If the ball travels makes 46 revolutions per minute, what is the ball's:
a) Angular speed in radians per second? (Give your answer as an exact fraction.)
b) Linear speed in feet per second? (leave your answer as a fraction)

Find each measurement indicated. Round your answers to the nearest tenth.
20) Find $A B$
21) Find $m \angle B$



Solve each triangle (Find the measures of all missing angles and all missing sides). Round your answers to the nearest tenth.
22) $m \angle B=64^{\circ}, a=30, b=29$

State the number of possible triangles that can be formed using the given measurements.
23) $m \angle B=22^{\circ}, a=35 \mathrm{~cm}, b=26 \mathrm{~cm}$
24) $m \angle B=136^{\circ}, a=17$ in, $b=27$ in
25) $m \angle C=157^{\circ}, b=22$ in, $c=18$ in

Find each measurement indicated. Round your answers to the nearest tenth. Hint: Draw the picture. If you have the ambiguous case, you must determine how many triangles are possble. For two triangles the angle will have two different measures.
26) $m \angle B=54^{\circ}, a=28 \mathrm{ft}, b=25 \mathrm{ft}$

Find $m \angle C$

Find each measurement indicated. Round your answers to the nearest tenth.
27) Find $m \angle A$

28) Find $A B$


Find the area of each triangle to the nearest tenth.
29)

30)


