Math-1060

Session \#13

Textbook 5.3

Graphs of the Other
 Trigonometric Functions

Domain (of a function): the set of input values that have a corresponding output value.

A single-variable equation is not a function.
Can an expression have a domain?
Rational Expression is a ratio of expressions. In Math-3 we considered ratios of polynomial expressions.
$x^{2}-1 \quad$ Excluded value the value that causes division $x+1$ by zero in the rational expression.

In other words, we exclude the value that causes the expression to be undefined.

When $x=-1$, the expression is undefined.
Domain of an expression: the set of all values for ' x ' that results in the expression being defined.

Consider the following: in a particular city, there are only red cars or white cars. I have a car but it is not white.
What color is my car?
We can define a domain two ways:
(1) specifying what the domain is, or
(2) specifying what the domain is not.

Sometimes it is easier so specify what it is not.

```
\(x^{2}-1\) Specify the domain of the function both ways.
\(x+1\)
Domain: \(\{x: x=(-\infty, 1) \cup(1, \infty)\}\) (Set-builder notation)
    Domain: \(x=(-\infty, 1) \cup(1, \infty)\) (simple definition)
    Domain: \(\{x: x \neq 1\}\)
    Domain: \(x \neq 1\)
```


Domain of a single-variable equation. $\quad 3 x+2=6 x+4$

We identify the domain of the expression on the right side of the "=" sign separately from the domain of the left side.
The expression: $6 x+4$ is defined for all real numbers.
The expression: $3 x+2$ is defined for all real numbers.
Domain of Validity: the set of all values for ' x ' that results in both sides of the equation being defined.

$$
\frac{2 x^{2}-4 x}{x-2}=2 x \quad \text { Domain of validity: } \quad \mathrm{x} \neq 2
$$

Identity: an equation that is true for all values that are in the domain of both sides of the equation.

Identity: an equation that is true for all values that are in the domain of both sides of the equation.

Is it an Identity? If not, why not?
$4 x+2=6 x+4 \quad$ No. The domain of validity is "all real numbers" but the equation is true only when $\mathrm{x}=1$.

$$
\frac{2 x^{2}-4 x}{x-2}=2 x
$$

When we factor the left side of the equation,
we have $2 x(x-2)$

$$
\frac{2 x(x-2)}{x-2}=2 x
$$

Which simplifies to $2 x=2 x$
Which is true for all real numbers.
AND it is true for all values in domain of validity ($x \neq 2$). Therefore it is an identity.

Is it an Identity? If not, why not?
$\sin \theta=\frac{1}{\csc \theta} \quad \begin{aligned} & \text { Working on the right side; the } \\ & \text { cosecant ratio is defined as hyp/opp. }\end{aligned}$

$$
\begin{array}{ll}
\sin \theta=\frac{1}{\frac{h y p}{o p p}} & \begin{array}{l}
1 \text { divided by hyp/opp is the same } \\
\text { as } 1 \text { multiplied by opp/hyp }
\end{array} \\
\sin \theta=\frac{o p p}{h y p} & \begin{array}{l}
\text { The right side is now the definition of } \\
\text { the sine ratio. }
\end{array}
\end{array}
$$

Which is true for all real numbers.
AND it is true for all values in domain of validity ($\theta \neq \pi n$ for $n \in \mathbb{Z}$). Therefore it is an identity.

Reciprocal Identities
$\sin \theta=\frac{1}{\csc \theta} \quad \cos \theta=\frac{1}{\sec \theta}$
$\tan \theta=\frac{1}{\cot \theta}$
$\csc \theta=\frac{1}{\sin \theta}$
$\sec \theta=\frac{1}{\cos \theta}$
$\cot \theta=\frac{1}{\tan \theta}$

Quotient Identities
$\tan \theta=\frac{\sin \theta}{\cos \theta}$
$\cot \theta=\frac{\cos \theta}{\sin \theta}$

UNIT CIRCLE
$\tan \theta=\underline{y}$
$\tan \left(-90^{\circ}\right)=1 / 0=$ undefined
Vertical asymptote $\tan \left(-60^{\circ}\right)=-\sqrt{3}$
$\tan \left(-30^{\circ}\right)=-\sqrt{3} / 3$
$\tan 0^{\circ}=0$
$\tan 30^{\circ}=\sqrt{3} / 3$
$\tan 60^{\circ}=\sqrt{3}$
$\tan 90^{\circ}=1 / 0$
Vertical asymptote

1. What are the "zeroes" of the tangent function?
($\theta=$? $)$
2. What are the vertical asymptotes of the tangent function?

$\lim _{x \rightarrow-\frac{\pi}{2}} f(x)=?$
$\lim _{x \rightarrow+\frac{\pi}{2}} f(x)=?$

Asymptotes and Zeros of the Tangent Function

X-intercepts \rightarrow zeroes of the numerator: $\sin x=0$
$\Theta=$? for $\sin \theta=0$
$0 \quad \pi \quad 2 \pi \quad 3 \pi$
$\theta=n \pi$ for $\theta \in \mathbb{Z}$
Vertical Asymptotes \rightarrow zeroes of the denominator: $\cos x=0$
$\Theta=$? for $\cos \theta=0$

$$
\begin{array}{llll}
\frac{\pi}{2} & \frac{3 \pi}{2} & \frac{5 \pi}{2} & \frac{7 \pi}{2}
\end{array}
$$

$$
\theta=n \pi+\frac{\pi}{2} \quad \theta=\left(n+\frac{1}{2}\right) \pi
$$

$$
\theta=\frac{(2 n+1) \pi}{2} \text { for } \theta \in \mathbb{Z}
$$

The Tangent Function

$$
\tan x=\frac{\sin x}{\cos x}
$$

X-intercepts: $\sin x=0$
Asymptotes: $\cos x=0$

$$
f(x)=\tan (b x-c)+d
$$

Amplitude: doesn't have one (look at the graph)
Period: $\frac{\pi}{b} \quad \begin{gathered}\text { A full period of } \tan (x) \text { occurs between } 2 \\ \text { asymptotes which occur at odd multiples of }\end{gathered} \frac{\pi}{2}$
Horiz. stretch factor causes
π
asymptotes to be odd multiplies of: $2 b$

Tangent Function

$$
f(x)=a \tan (\overrightarrow{b x} \overrightarrow{\vec{c}})+d \downarrow \uparrow
$$

$a= \pm 1$ (always, why?)

$$
\tan x=\frac{a \sin x}{a \cos x}
$$

If a <0 : reflection across x-axis

Period: $\quad \frac{\pi}{b} \quad$ A full period occurs between 2 consecutive asymptotes.

\longrightarrow Horizontal translation
\longleftarrow (phase shift)
Careful: if there is a Horizontal stretch factor, it will affect horizontal translation (phase shift) so we separate them by factoring
$\downarrow \uparrow$ Vertical translation

Transformations of the tangent function: Describe how $\tan (\mathrm{x})$ is transformed to graph: - $\tan (2 \mathrm{x})$

$$
f(x)=\tan (b x-c)+d
$$

1. Amplitude: n / a
2. Period: $\quad \frac{\pi}{b} \quad=\frac{\pi}{2}$
3. Vertical Asymptotes: odd multiples of $\frac{\pi}{2 b}=\frac{\pi}{4}$
4. -1 coefficient: causes reflection across x-axis.

The Sine and Cosecant Functions

$\csc \theta=\frac{1}{\sin \theta}$

Cosecant (x)

The Cosecant Function: $y=2 \csc 2 x$
To graph transformations, rewrite the equation as it's reciprocal, then find zero's, max/mins (amp), and period.

$$
f(x)=\frac{a}{\sin (b x-c)+d} \quad f(x)=\frac{2}{\sin (2 x)}
$$

1. Vertical stretch: factor of 2
2. Vertical asymptotes: even multiples of $\frac{\pi}{2}=(0 * \pi / 2),(2 * \pi / 2)$ etc.
3. Horizontal shrink factor of $1 / 2$, changes period to π

The Cosine and Secant Functions
$\operatorname{Cos} x$

$$
\sec \theta=\frac{1}{\cos \theta}
$$

$\operatorname{Sec} x$

Function	Period	Domain	Range
$\sin x$	2π	All reals	$[-1,1]$
$\cos x$	2π	All reals	$[-1,1]$
$\tan x$	π	$x \neq \pi / 2+n \pi$	All reals
$\cot x$	π	$x \neq n \pi$	All reals
$\sec x$	2π	$x \neq \pi / 2+n \pi$	$(-\infty,-1] \cup[1, \infty)$
$\csc x$	2π	$x \neq n \pi$	$(-\infty,-1] \cup[1, \infty)$

Function	Asymptotes	Zeros	Even/ Odd
$\sin x$	None	$n \pi$	Odd
$\cos x$	None	$\pi / 2+n \pi$	Even
$\tan x$	$x=\pi / 2+n \pi$	$n \pi$	Odd
$\cot x$	$x=n \pi$	$\pi / 2+n \pi$	Odd
$\sec x$	$x=\pi / 2+n \pi$	None	Even
$\csc x$	$x=n \pi$	None	Odd

