Math-1060 Session #13

Textbook 5.3

Graphs of the Other Trigonometric Functions

<u>Domain (of a function)</u>: the set of input values that have a corresponding output value.

A single-variable equation is not a function.

Can an expression have a domain?

Rational Expression is a ratio of expressions. In Math-3 we considered ratios of polynomial expressions.

$$\frac{x^2-1}{x+1}$$
 Excluded value the value that causes division by zero in the rational expression.

In other words, we exclude the value that causes the expression to be *undefined*.

When x = -1, the expression is <u>undefined</u>.

<u>Domain of an expression</u>: the set of all values for 'x' that results in the expression being defined.

Consider the following: in a particular city, there are only red cars or white cars. I have a car but it is not white. What color is my car?

We can define a domain two ways:

- (1) specifying what the domain is, or
- (2) specifying what the domain is not.

Sometimes it is easier so specify what it is not.

$$\frac{x^2-1}{x+1}$$
 Specify the domain of the function both ways.

Domain: $\{x: x = (-\infty, 1) \cup (1, \infty)\}$ (Set-builder notation)

Domain: $x = (-\infty, 1) \cup (1, \infty)$ (simple definition)

Domain: $\{x: x \neq 1\}$

Domain: $x \neq 1$

Domain of a single-variable equation. 3x + 2 = 6x + 4

We identify the domain of the expression on the right side of the "=" sign separately from the domain of the left side.

The expression: 6x + 4 is defined for all real numbers.

The expression: 3x + 2 is defined for all real numbers.

<u>Domain of Validity</u>: the set of all values for 'x' that results in both sides of the equation being defined.

$$\frac{2x^2 - 4x}{x - 2} = 2x$$
 Domain of validity: $x \ne 2$

<u>Identity</u>: an equation that is true for all values that are in the domain of both sides of the equation.

<u>Identity</u>: an equation that is true for all values that are in the domain of both sides of the equation.

Is it an Identity? If not, why not?

$$4x + 2 = 6x + 4$$

No. The domain of validity is "all real numbers" but the equation is true only when x = 1.

$$\frac{2x^2 - 4x}{x - 2} = 2x$$

When we factor the left side of the equation, we have 2x(x-2)

$$\frac{2x(x-2)}{x-2} = 2x$$

Which simplifies to 2x = 2x

Which is true for all real numbers.

AND it is true for all values in domain of validity ($x \ne 2$). Therefore it is an identity.

Is it an Identity? If not, why not?

$$\sin\theta = \frac{1}{\csc\theta}$$

Working on the right side; the cosecant ratio is defined as hyp/opp.

$$\sin\theta = \frac{1}{\frac{hyp}{opp}}$$

1 divided by hyp/opp is the same as 1 multiplied by opp/hyp

$$\sin\theta = \frac{opp}{hyp}$$

The right side is now the definition of the sine ratio.

Which is true for all real numbers.

AND it is true for all values in domain of validity ($\theta \neq \pi n \ for \ n \in \mathbb{Z}$). Therefore it is an identity.

Reciprocal Identities

$$\sin \theta = \frac{1}{\csc \theta} \qquad \cos \theta = \frac{1}{\sec \theta}$$

$$\cos \theta = \frac{1}{\sec \theta}$$

$$\tan \theta = \frac{1}{\cot \theta}$$

$$\csc \theta = \frac{1}{\sin \theta} \qquad \sec \theta = \frac{1}{\cos \theta}$$

$$\sec \theta = \frac{1}{\cos \theta}$$

$$\cot \theta = \frac{1}{\tan \theta}$$

Quotient Identities

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

Construct the Tangent Function

$$\tan 90^{\circ} = \frac{1}{0} \qquad \tan 90^{\circ} = \frac{-1}{0} \qquad \tan A = \frac{\sin \theta}{\cos \theta}$$

$$\forall = 0$$

$$\tan \theta = \frac{0}{1} \qquad \tan \theta = \frac{0}{1}$$

(radians)
 sin θ
 cos θ
 tan θ

 O
 O
 1
 O

$$\frac{\pi}{4}$$
 $\frac{\sqrt{2}}{2}$
 $\frac{\sqrt{2}}{2}$
 1

 $\frac{\pi}{2}$
 1
 O
 und

 $\frac{3\pi}{4}$
 $\frac{\sqrt{2}}{2}$
 $-\frac{\sqrt{2}}{2}$
 -1
 O

 $\frac{5\pi}{4}$
 $-\frac{\sqrt{2}}{2}$
 $-\frac{\sqrt{2}}{2}$
 1

 $\frac{3\pi}{2}$
 -1
 O
 und

 $\frac{7\pi}{4}$
 $-\frac{\sqrt{2}}{2}$
 $\frac{\sqrt{2}}{2}$
 -1

 $\frac{2\pi}{2}$
 O
 1
 O

1. What are the "zeroes" of the tangent function?

$$(\theta = ?)$$

2. What are the vertical asymptotes of the tangent function?

$$\tan x = \frac{\sin x}{\cos x}$$

$$\lim_{x \to -\frac{\pi}{2}} f(x) = ?$$

$$\lim_{x \to +\frac{\pi}{2}} f(x) = ?$$

$$\lim_{x \to +\frac{\pi}{2}} f(x) = ?$$

$$\tan x = \frac{\sin x}{\cos x}$$

Asymptotes and Zeros of the Tangent Function

X-intercepts \rightarrow zeroes of the numerator: $\sin x = 0$

$$\Theta = ?$$
 for $\sin \theta = 0$

$$0 \quad \pi \quad 2\pi \quad 3\pi$$

$$\theta = n\pi$$
 for $\theta \in \mathbb{Z}$

<u>Vertical Asymptotes</u> →

zeroes of the denominator: $\cos x = 0$

$$\Theta = ?$$
 for $\cos \theta = 0$

$$\frac{\pi}{2} \quad \frac{3\pi}{2} \quad \frac{5\pi}{2} \quad \frac{7\pi}{2}$$

$$\theta = n\pi + \frac{\pi}{2} \qquad \theta = (n + \frac{1}{2})\pi$$

$$\theta = \frac{(2n+1)\pi}{2} \text{ for } \theta \in \mathbb{Z}$$

Odd-numbered multiples of pi/2

The Tangent Function

$$\tan x = \frac{\sin x}{\cos x}$$

X-intercepts: $\sin x = 0$

Asymptotes: $\cos x = 0$

$$f(x) = \tan(bx - c) + d$$

Amplitude: doesn't have one (look at the graph)

Period: $\frac{\pi}{b}$ A full period of tan(x) occurs between 2 $\frac{\pi}{2}$ asymptotes which occur at odd multiples of 2

Horiz. stretch factor causes $\frac{\pi}{2b}$ asymptotes to be odd multiplies of:

Tangent Function

$$f(x) = a \tan(bx - c) + d$$

$$a = \pm 1$$
 (always, why?)

$$\tan x = \frac{a\sin x}{a\cos x}$$

If a < 0: reflection across x-axis

Period:
$$\frac{\pi}{h}$$

A full period occurs between 2 consecutive asymptotes.

Horizontal translation(phase shift)

<u>Careful</u>: if there is a Horizontal stretch factor, it will affect horizontal translation (phase shift) so we separate them <u>by factoring</u>

Vertical translation

Transformations of the tangent function: Describe how tan(x) is transformed to graph: -tan(2x)

$$f(x) = \tan(bx - c) + d$$

1. Amplitude: n/a

2. Period:
$$\frac{\pi}{b} = \frac{\pi}{2}$$

- 3. <u>Vertical Asymptotes</u>: odd multiples of $\frac{\pi}{2b} = \frac{\pi}{4}$
- 4. -1 coefficient: causes reflection across x-axis.

The Sine and Cosecant Functions

$$\csc\theta = \frac{1}{\sin\theta}$$

The Cosecant Function: $y = 2 \csc 2x$

To graph transformations, rewrite the equation as it's reciprocal, then find zero's, max/mins (amp), and period.

$$f(x) = \frac{a}{\sin(bx - c) + d}$$

$$f(x) = \frac{2}{\sin(2x)}$$

- 1. Vertical stretch: factor of 2
- 2. Vertical asymptotes: even multiples of $\frac{\pi}{2} = (0 * \pi/2)(2 * \pi/2), etc.$
- 3. Horizontal shrink factor of $\frac{1}{2}$, changes period to π

The Cosine and Secant Functions

$$\sec\theta = \frac{1}{\cos\theta}$$

Function	Period	Domain	Range
sin x	2π	All reals	[-1, 1]
cos x	2π	All reals	[-1, 1]
tan x	π	$x \neq \pi/2 + n\pi$	All reals
cot x	π	$x \neq n\pi$	All reals
sec x	2π	$x \neq \pi/2 + n\pi$	$(-\infty, -1] \cup [1, \infty)$
csc x	2π	$x \neq n\pi$	$(-\infty, -1] \cup [1, \infty)$

Function	Asymptotes	Zeros	Even/ Odd
sin x	None	$n\pi$	Odd
cos x	None	$\pi/2 + n\pi$	Even
tan x	$x = \pi/2 + n\pi$	$n\pi$	Odd
cot x	$x = n\pi$	$\pi/2 + n\pi$	Odd
sec x	$x = \pi/2 + n\pi$	None	Even
csc x	$x = n\pi$	None	Odd