# Math-1060 <br> 7-1 (Part 2) 

Applications
Of Vectors

## Vocabulary:

## Vector

Position vector
Component form of a vector
Zero Vector
Magnitude of a Vector
Scalar Multiplication
Unit Vector
Standard Unit Vector

Direction Angle
Horizontal Component
Vertical Component
Resolving a Vector

## Uses of Vectors <br> Radar Screen



A ball is thrown at an initial velocity of 90 mph (fastball) at a 30 upward from horizontal.


1. What is its horizontal velocity component?

$$
\cos 30^{\circ}=\frac{x}{90 \mathrm{mph}} \quad 90 \mathrm{mph}\left(\cos 30^{\circ}\right)=90 \mathrm{mph}(0.8660)=77.9 \mathrm{mph}
$$

A car is driving at a speed of 20 mph toward the south.

$$
v=\langle 0,-20\rangle
$$

What would the vector look like if the car was traveling 3 times as fast?

$$
3 v=\langle 0,-60\rangle
$$

The new vector is 3 times as long (magnitude is 3 times as big-but in the same direction)

3 is a scalar
$v=\langle | v|\cos \theta,|v| \sin \theta\rangle$
Horizontal component:

$$
\begin{aligned}
& f_{i}=25 \cos 19^{\circ} \\
& f_{i}=23.6 l b s_{f}
\end{aligned}
$$

Vertical component:

$$
\begin{aligned}
f_{j} & =25 \sin 19^{\circ} \\
f_{j} & =8.1 l b s_{f}
\end{aligned}
$$

## Force Vectors



A box is being rolled (on a cart) up a 15 degree incline. The worker is pushing with a force of 25 lbf in a direction that is parallel to the incline.

Force vectors are always resolved to "parallel the plane" and "normal to the plane" (perpendicular to the plane)

A worker is pushing the box up the slope with 10 lb of force.
If the box weights 40 lbs , is the worker exerting enough force to move the box up the incline?


## Force Vectors



A box is being rolled (on a cart) up a 10 degree incline. The worker is pushing with a force of 25 lbf in a direction that is parallel to the incline.

What is the horizontal component of the force?
What is the vertical component of the force?

What is the difference between velocity and speed?

## velocity is a vector. speed is a scalar magnitude

In calm water, a boat can travel at 23 mph . The boat is traveling upstream in a river that is flowing at 10 mph .

1) Draw the velocity vector of the boat.
2) Draw the velocity vector of the water.
3) How fast will the boat move (relative to the river bank)?
$-10 \mathrm{mph}$

23 mph
13 mph

A plane is flying on a compass heading of 270 (straight west) at an airspeed of 520 mph . The jet-stream is coming from a direction of 300 at a speed of 110 mph .

What is the speed of the airplane relative to the ground? Challenging $\rightarrow$ compass headings NOT the same as $x-y$ plane direction angles.

$$
\begin{aligned}
& \vec{v}=520 \cos 180 i+520 \sin 180 j \\
& \vec{v}=-520 i+0 j \\
& \vec{w}=110 \cos 330 i+110 \sin 330 j \\
& \overrightarrow{\mathrm{w}}=95.3 i-55 j \\
& \overrightarrow{\mathrm{w}}+\overrightarrow{\mathrm{v}}=(-520+95.3) i-55 j \\
& \overrightarrow{\mathrm{w}}+\overrightarrow{\mathrm{v}}=-424.7 i-55 j \\
& \theta_{\text {ref }}=\tan ^{-1} \frac{55}{424.7} \\
& |\overrightarrow{w+v}|=\sqrt{424.7^{2}+55^{2}}=428.2 \\
& \theta_{\text {ref }}=7.4 \\
& \theta_{\text {dir }}=187.4 \quad \theta_{\text {compass }}=270-7.4
\end{aligned}
$$

A bolt secured to a bridge is being acted upon by forces being exerted by two cables attached to the bolt. The force vector for one of the cables is represented by $\boldsymbol{F}_{1}=\langle 1.7,9.8\rangle$. The other force vector, $\boldsymbol{F}_{2}$, is known to have a magnitude 5 and a direction angle of $10^{\circ}$. Determine the angle between the two cables that are attached to this bolt.

$$
\begin{gathered}
i+9.8 j \quad \theta_{\text {dir }}=\tan ^{-1}\left(\frac{9.8}{1.7}\right) \\
\theta_{\text {dir }}=80.2 \\
F_{2}=5 \cos 10 i+5 \sin 10 j \\
\theta_{\text {dir }}=10
\end{gathered}
$$

$$
\theta_{\text {difference }}=70.2
$$

Two forces are acting on an object. The vectors representing the forces are given by $\boldsymbol{F}_{1}=\langle 14.8,2.6\rangle$ and $\boldsymbol{F}_{2}=\langle 16.9,-6.1\rangle$. Find the direction angle of the resultant force.
$F_{1}=14.8 i+2.6 j$
$F_{\text {result. }}=(14.8+16.9) i+(2.6-6.1) j$
$F_{2}=16.9$
$F_{\text {result. }}=31.7 i-3.1 j$
$\theta_{\text {ref }}=\tan ^{-1}\left(\frac{3.5}{31.7}\right)$
$\theta_{\text {ref }}=6.3 \quad \theta_{\text {dir }}=360-6.3 \quad \theta_{\text {dir }}=353.7$

Two tugboats are connected to a disabled cruise ship and are attempting to tow the ship in an easterly direction. The $1^{\text {st }}$ tug is exerting a force on the ship that has a magnitude of 10,000 kilograms at an angle of $10^{\circ}$ from horizontal; this force is represented by the vector $\boldsymbol{F}_{1}$. The $2^{\text {nd }}$ tug is exerting a force of $12,000 \mathrm{~kg}$. at an angle of $-15^{\circ}$ from horizontal; this force is represented by the vector $\boldsymbol{F}_{2}$. (Round your answers to 2 decimal places.)

$$
F_{1}=10,000 \cos 10 i+10,000 \sin 10 j
$$

(a)What is the horizontal component of the vector representing the force for the $2^{\text {nd }}$ tugboat? $\quad F_{2 i}=12,000 \cos (-15) i$

$$
F_{2 i}=11,591.11 \mathrm{~kg}
$$

(b) In order to move the ship at all, the resultant force exerted by the two tugboats needs to be $20,000 \mathrm{~kg}$. Will these tugboats be able to move the ship? yes

$$
\begin{aligned}
& F_{1}+F_{2}=(10 K \cos 10+12 K \cos (-15) i \\
&+(10 K \sin 10+12 K \sin (-15) j \\
& F_{1}+F_{2}= 21,439.19 i-1,369.35 j \\
&\left|F_{1}+F_{2}\right|=\sqrt{(21,439.19)^{2}+(-1,369.35)^{2}} \\
&\left|F_{1}+F_{2}\right|=\sqrt{(21,439.19)^{2}+(-1,369.35)^{2}} \\
&\left|F_{1}+F_{2}\right|= 21,482.87 \mathrm{~kg}
\end{aligned}
$$

(c) Using the direction angle for the resultant force, determine whether or not the ship will move due east (direction angle of zero).

$$
\begin{aligned}
& F_{1}+F_{2}=(10 K \cos 10+12 K \cos (-15) i \\
& \quad+(10 K \sin 10+12 K \sin (-15) j \\
& F_{1}+F_{2}= 21,439.19 i-1,369.35 j \\
& \theta_{\text {ref }}=\tan ^{-1}\left(\frac{1369.35}{21439.19}\right) \\
& \theta_{\text {ref }}=3.65 \\
& \theta_{\text {dir }}=360-3.65 \quad \theta_{\text {dir }}=356.35
\end{aligned}
$$

Which of the following statement is TRUE concerning the vector $v=-5 i+12 j$ ? Qqadarahtil
The vector $u=-512 i+j$ is a unit vector in the same direction as $v$.
较 $|v|=169$
(c) $1 / 13 v$ is a unit vector in the same direction as $v$.

The direction angle of $v$ is $292.62^{\circ}$.
yox Both (d) and (e) are TRUE.

$$
\begin{array}{ll}
u=\frac{v}{|v|} \quad|v|=\sqrt{(-5)^{2}+(12)^{2}} & |v|=13 \\
\theta_{\text {ref }}=\tan ^{-1}\left(\frac{12}{5}\right) \quad \theta_{\text {ref }}=67.4 & \theta_{\text {dir }}=180-67.4 \\
& \theta_{\text {dir }}=112.6
\end{array}
$$

A 400-pound force is applied by a logger to a cable attached to a tree that has been cut down. The cable from the end of the tree to the logger is at an angle of $30^{\circ}$ from horizontal. How much work is done if the logger drags the tree horizontally along the ground for 40 feet? Use the work equation $W=\boldsymbol{F} \cdot \boldsymbol{d}$. (Round your answer to one decimal place.)

$$
\begin{aligned}
& F_{1}=400 \cos 30 i+400 \sin 30 j \\
& F_{1 i}=364.41 \mathrm{lbf} \\
& w=F_{1 i} * d=364.41 \mathrm{lbf} * 40 \mathrm{ft} \\
& 13,856.41 \mathrm{ft} * \mathrm{lbf}
\end{aligned}
$$

