Math-1060 7-1 (Part 1)

Vectors in the Plane

Vocabulary:

Vector

Position vector
Component form of a vector
Zero Vector
Magnitude of a Vector
Scalar Multiplication
Unit Vector
Standard Unit Vector

Direction Angle
Horizontal Component
Vertical Component
Resolving a Vector

Vector: a single real number that represents both magnitude and direction.

We can show vectors as an arrow.
(1) length indicates magnitude
(2) arrow head indicates direction

Which vector is bigger?
(1)
(2)

Which vector has a bigger component in the up direction?

Position Vector: a vector whose "tail" is at the origin.

2 Dimensional Vectors

An ordered pair of real numbers in component form

Other Vectors Vector with tail not at the origin.

Are these equivalent vectors?
Vector: magnitude \& direction
(1) Do they have the same magnitude (length)?
(2) Do they have the same direction (horizontal and vertical components)?

Head Minus Tail (HMT) Rule

$R \vec{S}$ Initial point: $(-4,2)$ terminal point: $(-2,6)$
Represents the Vector:

$$
v=\left\langle x_{2}-x_{1}, y_{2}-y_{1}\right\rangle
$$

$$
v=\langle(-2-(-4),(6-2)\rangle=\langle 2,4\rangle
$$

Are they the same vector? Is Vector TV equivalent to Vector KQ?

Zero Vector: $\quad v=\langle 0,0\rangle$
(starts and ends where it began (at the origin))
Magnitude: (length of the vector) $|v|$
From $\left(x_{1}, y_{1}\right)$ to $\left(x_{2}, y_{2}\right) \quad|v|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
(distance formula)
If the vector is: $v=\langle a, b\rangle$ (tail end at the origin)
then: $|v|=\sqrt{a^{2}+b^{2}}$

Find the magnitude of the vector that begins at $(-3,4)$ and ends at $(-5,2)$.
(what is the distance between these two points)
Find the magnitude of: $\quad v=\langle 3,4\rangle$
(begins at the origin and ends at $(3,4)$
Find a vector that begins at the origin that is equivalent to the vector from $(-3,4)$ to $(-5,2)$

Vector Addition $\quad v=\langle 2,4\rangle \quad u=\langle 5,1\rangle$

Vector Addition

$$
\begin{aligned}
& v=\langle 2,4\rangle \quad u=\langle 5,1\rangle \\
& v+u=?
\end{aligned}
$$

$$
v+u=\langle 2+5,4+1\rangle=\langle 7,5\rangle
$$

"Tail-to-head" method

$$
w=\langle-3,7\rangle \quad v=\langle 4,-2\rangle
$$

For: $w+v$
Draw the two vectors (tail-to-head)
What is the resultant of the vectors " w " and " v "

Scalar Multiplication

$$
\begin{aligned}
& v=\langle 3,-4\rangle \quad m=\langle 2,5\rangle \quad n=\langle-1,7\rangle \\
& 4 v=?
\end{aligned}
$$

$m+n=?$
$2 m-v=?$

Unit Vector: a vector with a magnitude of ' 1 '.

$$
|u|_{\text {(this "absolute value" symbol means magnitude) }}^{1 \quad \mathrm{u} \text { is the "unit vector." }}
$$

A unit vector has a magnitude of ' 1 ' but it also has a direction.
If you have a vector whose magnitude is 3 , what happens if you multiply that vector by $1 / 3$?

It's magnitude becomes $1 \rightarrow$ it becomes a unit vector.

Any vector divided by its magnitude becomes a unit vector.

Unit Vector

Find the unit vector for: $\quad v=\langle 2,4\rangle$

$$
\begin{gathered}
u=\frac{v}{|v|} \quad|v|=\sqrt{2^{2}+4^{2}} \quad|v|=\sqrt{20}=2 \sqrt{5} \\
u=\frac{1}{2 \sqrt{5}}\langle 2,4\rangle=\left\langle\frac{2}{2 \sqrt{5}}, \frac{4}{2 \sqrt{5}}\right\rangle=\left\langle\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right\rangle
\end{gathered}
$$

This unit vector ' u ' has the same direction as vector ' v ' since it is a scalar multiple of vector ' v '.

Does this "unit vector" have a magnitude of ' 1 '?

So does this "unit vector"
have a magnitude of ' 1 '? $\quad\left\langle\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right\rangle$

$$
|u|=\sqrt{\left(\frac{1}{\sqrt{5}}\right)^{2}+\left(\frac{2}{\sqrt{5}}\right)^{2}}
$$

$$
|u|=\sqrt{\frac{1}{5}+\frac{4}{5}} \quad|u|=\sqrt{\frac{5}{5}}=1
$$

YES!!

Find the unit vector for: $\quad m=\langle 3,1\rangle$

Standard unit vectors: unit vectors that have a magnitude of ' 1 ' and point to either:
(1) $+x$ direction $\quad i=\langle 1,0\rangle$
or
(2) +y direction. $j=\langle 0,1\rangle$

Re-writing a vector as a scalar multiple of a standard vector.
 We could rewrite this as the addition of the x and y component vectors.

$$
v=\langle 2,0\rangle+\langle 0,4\rangle
$$

Each of these could be rewritten as a scalar times a standard unit vector.

$$
\begin{aligned}
& v=2\langle 1,0\rangle+4\langle 0,1\rangle \\
& v=2 i+4 j
\end{aligned}
$$

We call this a linear combination of the vectors " i " and "j"

Direction Angle: the positive angle between the x-axis and the

 position vector 'v' Think of this as an angle in Standard position.
Draw the standard position
 220°

90°

To find the direction angle of a vector:

$$
v=\langle-2,4\rangle \quad \text { 1. The position vector is in Quadrant II. }
$$

2. Find the reference angle. $\tan ^{-1} \frac{y}{x}=\theta$

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{4}{2}\right)=\theta \\
& \quad \theta_{\text {ref }}=63.4 \\
& \quad \theta_{\text {position }}=180-63.4 \\
& 0^{\circ} \quad \theta_{\text {position }}=116.6
\end{aligned}
$$

The horizontal component of a vector with a direction

If a vector has a direction angle θ

Resolving Vectors

Find the "i" and " j " components of a vector (resolve the vector) with a direction angle of 120°, and a magnitude of 6 .

$$
v=\langle | v|\cos \theta,|v| \sin \theta\rangle \quad v=\left\langle 6 \cos 120^{\circ}, 6 \sin 120^{\circ}\right\rangle
$$

We convert standard position angles that are not in quadrant I, into acute reference angles and we account for +/-.

$$
v=\left\langle 6\left(-\cos 60^{\circ}\right), 6 \sin 60^{\circ}\right\rangle
$$

(BUT a decent calculator will take care of the +/-)

$$
\begin{gathered}
v=\langle-0.5,0.86\rangle \\
v=-0.5 i+0.866 j
\end{gathered}
$$

Find the component form of the vector ' v ' $\quad(v=a i+b j)$

$$
\begin{array}{cc}
v=\langle | v|\cos \theta,|v| \sin \theta\rangle & v=\langle 18 \cos 225,18 \sin 225\rangle \\
90^{\circ} & v=\langle-12.73,-12.73\rangle \\
\uparrow & v=-12.73 i-12.73 j
\end{array}
$$

180°

Vocabulary:

Vector

Position vector
Component form of a vector
Zero Vector
Magnitude of a Vector
Scalar Multiplication
Unit Vector
Standard Unit Vector

Direction Angle
Horizontal Component
Vertical Component
Resolving a Vector

Find: Magnitude and the Direction Angle of a Vector

$$
\begin{aligned}
& v=(5,7\rangle \\
& |v|=\sqrt{5^{2}+7^{2}}=\sqrt{74} \quad \text { (Magnitude) } \\
& v=\langle | v|\cos \theta,|v| \sin \theta\rangle \\
& 5=\sqrt{74} \cos \theta
\end{aligned}
$$

$$
\theta=\cos ^{-1} \frac{5}{\sqrt{74}}=54.5^{\circ} \quad(\text { Direction angle })
$$

Find: Magnitude and the Direction Angle of a Vector

$$
v=\langle-1,-3\rangle \quad \text { (quadrant III) }
$$

$$
\begin{aligned}
& |v|=\sqrt{(-1)^{2}+(-3)^{2}}=\sqrt{10} \quad \text { (Magnitude) } \\
& v=\langle | v|\cos \theta,|v| \sin \theta\rangle
\end{aligned}
$$

$$
1=\sqrt{10} \cos \theta \quad \text { (use }+ \text { side lengths) }
$$

$$
\theta_{r e f}=\cos ^{-1} \frac{1}{\sqrt{10}}=71.6^{\circ} \quad(\text { reference angle })
$$

$$
\theta_{\text {position }}=180+71.6 \quad \theta_{\text {position }}=251.6
$$

Properties of Vectors

$v+u=u+v \quad$ Vector Addition is "commutative"
$(v+u)+w=u+(v+w)$ Vector Addition is "associative"
$\left(k_{1} k_{2}\right) u=k_{1}\left(k_{2} u\right) \quad$ Scalar multiplication is "associative"
$\left.k_{1}(u+v)=k_{1} u+k_{1} v\right)$
Scalar multiplication is "distributive"
$\left.\left(k_{1}+k_{2}\right) v=k_{1} v+k_{2} v\right)$
$0 u=0 \quad$ Zero Product Property
$1 u=u \quad$ Identity Property of Multiplication
$u+(-u)=0 \quad$ Inverse Property of Addition

