Math-1060 Lesson 6-1

Verifying Trigonometric Identities

Domain of a single-variable equation. $\quad 3 x+2=6 x+4$

We identify the domain of the expression on the right side of the "=" sign separately from the domain of the left side.
The expression: $6 x+4$ is defined for all real numbers.
The expression: $3 x+2$ is defined for all real numbers.
Domain of Validity: the set of all values for ' x ' that results in both sides of the equation being defined.

$$
\frac{2 x^{2}-4 x}{x-2}=2 x \quad \text { Domain of validity: } \quad \mathrm{x} \neq 2
$$

Identity: an equation that is true for all values that are in the domain of both sides of the equation.

Identity: an equation that is true for all values that are in the domain of both sides of the equation.

Is it an Identity? If not, why not?
$4 x+2=6 x+4 \quad$ No. The domain of validity is "all real numbers" but the equation is true only when $x=1$.

$$
\frac{2 x^{2}-4 x}{x-2}=2 x
$$

When we factor the left side of the equation,
we have $2 x(x-2)$

$$
\frac{\angle x(x-\angle)}{x-2}=2 x
$$

Which simplifies to $2 x=2 x$
Which is true for all real numbers.
AND it is true for all values in domain of validity ($x \neq 2$). Therefore it is an identity.

Reciprocal Identities
$\sin \theta=\frac{1}{\csc \theta} \quad \cos \theta=\frac{1}{\sec \theta}$
$\tan \theta=\frac{1}{\cot \theta}$
$\csc \theta=\frac{1}{\sin \theta}$
$\sec \theta=\frac{1}{\cos \theta}$
$\cot \theta=\frac{1}{\tan \theta}$

Quotient Identities
$\tan \theta=\frac{\sin \theta}{\cos \theta}$
$\cot \theta=\frac{\cos \theta}{\sin \theta}$

Using Substitution:

$$
\begin{aligned}
& \sin \theta=\frac{o p p}{h y p}=\frac{y}{1}=y \\
& \cos \theta=\frac{a d j}{h y p}=\frac{x}{1}=x
\end{aligned}
$$

Using Pythagorean Theorem:

$$
(\cos \theta)^{2}+(\sin \theta)^{2}=1
$$

The Pythagorean Identity
$\cos ^{2} \theta+\sin ^{2} \theta=1$

Other Pythagorean Identities

$$
\begin{gathered}
\underline{\cos ^{2} \theta+\sin ^{2} \theta=1} \quad \begin{array}{l}
\text { Divide both sides of the equation } \\
\text { by } \cos ^{2} \theta
\end{array} \\
\frac{\sin ^{2} \theta}{\cos ^{2} \theta}+\frac{\cos ^{2} \theta}{\cos ^{2} \theta}=\frac{1}{\cos ^{2} \theta} \quad \begin{array}{l}
\text { This give us our 2nd } \\
\text { "Pythagorean" identity. } \\
1+\tan ^{2} \theta=\sec ^{2} \theta
\end{array}
\end{gathered}
$$

Divide the first identity by $\sin ^{2} \theta$ and simplify to find the $3^{\text {rd }}$ Pythagorean Identity.

$$
1+\cot ^{2} \theta=\csc ^{2} \theta
$$

Angle $A: \begin{array}{rr}\sin A=\frac{y}{r} & \tan A=\frac{y}{x} \\ \cos A=\frac{x}{r} & \sec A=\frac{r}{x} \\ \cot A=\frac{x}{y} & \csc A=\frac{r}{y}\end{array}$
Angle $B: \quad \sin B=\frac{x}{r} \quad \tan B=\frac{x}{y} \quad \sec B=\frac{r}{y}$

$$
\cos B=\frac{y}{r} \quad \cot B=\frac{y}{x} \quad \csc B=\frac{r}{x}
$$

$$
\sin A=\cos (90-A)
$$

$$
\sin \theta=\cos (90-\theta)
$$

function of angle A = "co-function" of angle B.

Co-function Identities

$$
\begin{array}{|l|}
\hline \sin \theta=\cos (90-\theta) \\
\hline \cos \theta=\sin (90-\theta) \\
\hline
\end{array}
$$

$$
\tan \theta=\cot (90-\theta)
$$

$$
\sec \theta=\csc (90-\theta)
$$

$$
\cot \theta=\tan (90-\theta)
$$

$$
\csc \theta=\sec (90-\theta)
$$

Which functions are symmetric about the y-axis?

$$
f(x)=\sqrt{x}
$$

$f(x)=\cos x$

$f(x)=x^{3}$
$f(x)=\sqrt[3]{x}$

We call functions that are symmetric about the ' y '-axis, even functions.

The mathematical definition of an even function.

Which functions are symmetrical across the origin?

We call these functions "odd" functions.

The mathematical definition of an odd function.

$$
f(-x)=-f(x)
$$

$\sin (-\theta)=-\sin (\theta)$

$$
\begin{aligned}
\csc \theta & =\frac{1}{\sin \theta} \\
\csc (-\theta) & =-\csc (\theta)
\end{aligned}
$$

$$
\operatorname{Cos}(-\theta)=\cos (\theta)
$$

$$
\sec \theta=\frac{1}{\cos \theta}
$$

$$
\sec (-\theta)=\sec (\theta)
$$

$\operatorname{Sin}(-\theta)=-\sin (\theta)$
$\operatorname{Cos}(-\theta)=\cos (\theta)$

$$
\begin{aligned}
& \tan \theta=\frac{\sin \theta}{\cos \theta} \\
& \tan (-\theta)=\frac{\sin (-\theta)}{\cos (-\theta)} \\
& \tan (-\theta)=\frac{-\sin (\theta)}{\cos (\theta)} \\
& \tan (-\theta)=-\tan (\theta) \\
& \cot (-\theta)=-\cot (\theta)
\end{aligned}
$$

Even-Odd Identities

Even: $\operatorname{Cos}(-\theta)=\cos (\theta) \quad \sec (-\theta)=\sec (\theta)$

Odd: $\quad \sin (-\theta)=-\sin (\theta) \quad \csc (-\theta)=-\csc (\theta)$
$\tan (-\theta)=-\tan (\theta) \quad \cot (-\theta)=-\cot (\theta)$

$$
\sin (-\theta) \sec (-\theta)=-\sin (\theta) \sec (\theta)
$$

$$
=-\sin (\theta) \frac{1}{\cos (\theta)}=\frac{-\sin (\theta)}{\cos (\theta)}
$$

$$
=-\tan \theta
$$

Simplifying by Using Properties and Trigonometric Identities

Simplify: $\quad \cot x \sin ^{3} x \sec x+\tan x \cos ^{3} x \csc x$

Try converting tan, cot, sec, csC into functions of sin and cos
Use properties of exponents:

Use the inverse Property of multiplication:

Use the Pythagorean Identity
$\sin ^{2} x+\cos ^{2} x$

$$
=1
$$

Simplifying by Expanding and Using Identities

Simplify: $\csc x-1)(\csc x+1)$ These are conjugate pairs!

$\cos ^{2} x \quad$ It looks like the factorization

$\csc ^{2} x-1$
 $\cos ^{2} x$

 of a "difference of 2 squares".For example:

$$
(x+2)(x-2)=x^{2}-4
$$

Looks similar to a Pythagorean identity:

$$
1+\cot ^{2} \theta=\csc ^{2} \theta \rightarrow \cot ^{2} \theta=\csc ^{2} \theta-1
$$

Use Substitution: Convert to Sines/Cosines:

$$
\frac{\cot ^{2} x}{\cos ^{2} x}
$$

$$
=\frac{\cos ^{2} x}{\sin ^{2} x} * \frac{1}{\cos ^{2} x}=\frac{1}{\sin ^{2} x}
$$

$$
=\csc ^{2} x
$$

Simplifying by Factoring and Using Identities

Simplify: $\sin ^{3} x+\sin x \cos ^{2} x$
$=\sin x\left(\sin ^{2} x+\cos ^{2} x\right) \quad$ Use Substitution:
Pythagorean Identity: $\sin ^{2} x+\cos ^{2} x=1=\sin x$
Using these guidelines may help to "simplify" simplification:

1. Try factoring
2. Look for things that look like: $1+(? ? ?)^{2} x$ or $(? ? ?)^{2} x$
3. Convert tan, cot, sec, $\underline{\text { csc }}$ into functions of sin and cos
4. Combine fractions (rational expressions) if you can.

Simplify:

$\tan x \cos x \cot x \csc x$

$\sin x(\tan x+\cot x)$

Identity: an equation that is true for all values that are in the domain of both sides of the equation.

Is it an Identity? If not, why not?
$4 x+2=6 x+4 \quad$ No. The domain of validity is "all real numbers" but the equation is true only when $x=1$.

$$
\frac{2 x^{2}-4 x}{x-2}=2 x
$$

When we factor the left side of the equation,
we have $2 x(x-2)$

$$
\frac{2 x(x-\angle)}{x-2}=2 x
$$

Which simplifies to $2 x=2 x$
Which is true for all real numbers.
AND it is true for all values in domain of validity ($x \neq 2$). Therefore it is an identity.

Verifying Trigonometric Identities

We are not trying to solve the equation. We are trying to verify that the left side of the equation is equivalent to the right side.

$$
\frac{2 x^{2}-4 x}{x-2}=2 x
$$

We work on one side of the equal sign to simplify the expression or to use substitution to try to make it equal to the other side.

Usually, we pick the side to work on that is the most complicated expression.

$$
\begin{aligned}
& \frac{2 x(x-2)}{x-2}=2 x \\
& 2 x=2 x
\end{aligned}
$$

Verify the Identity

$\frac{2-\cos ^{2} x}{\sin x}=\csc x+\sin x$

$$
\frac{1+1-\cos ^{2} x}{\sin x}=\csc x+\sin x
$$

$1+\sin ^{2} x$

$$
\frac{1+\sin ^{2} x}{\sin x}=\csc x+\sin x
$$

$$
\frac{1}{\sin x}+\frac{\sin ^{2} x}{\sin x}=\csc x+\sin x
$$

$\csc x+\sin x=\csc x+\sin x$

$\cos ^{2} x$
 Try Pythagorean

$$
\begin{gathered}
\cos ^{2} \theta+\sin ^{2} \theta=1 \\
\sin ^{2} \theta=1-\cos ^{2} \theta
\end{gathered}
$$

Substitution

Two terms on the right; split the left into two terms.

Simplify.

Yes: it's an identity

