Math-1060 Lesson 4-3

Exact Trigonometric Ratios

hypotenuse = 1

Why is it "nice" to have a hypotenuse whose length is ' 1 '?
$\operatorname{Sin} \Theta=$ opposite side
$\operatorname{Cos} \theta=\underline{\text { adjacent side }}$

Tan $\Theta=$ opp/adi
The length of the hypotenuse is no longer in the ratio!

Trigonometric Functions

Shot your cow: "Sha - Cho - Cao"

$$
\sec A=\frac{h}{a} \quad \csc A=\frac{h}{o} \quad \cot A=\frac{a}{o}
$$

$\xrightarrow[c \mathrm{OS} \rightarrow \mathrm{CSC}]{\sin _{\sim} \rightarrow \operatorname{Sec}}$

The Sine, Cosine, and Tangent ratios are defined based upon ratios of side of a right triangle.
What happens if the angle is greater than 90 (triangles don't have angles this big)?
We still use a right triangle, but the trig ratios must now account for the sing (+/-) of the $x-y$
$\operatorname{Cos} \theta=x$ $\operatorname{Sin} \theta=y$ pair of the endpoint of the hypotenuse.

Reference angle: The acute angle between the terminal side of the angle and the x -axis.

What quadrant of the $x-y$ plane is this angle in?

Reference angle: The acute angle between the terminal side of the angle and the x-axis.

What quadrant of the $x-y$ plane is this angle in?

Sin : positive or negative?
$\underline{\operatorname{Cos} \theta:}$ positive or negative?

Tan Θ : positive or negative? \square

Do you remember the side lengths for a 45-45-90 triangle?

What are the leg lengths if the hypotenuse $=1$?

Let's put the triangle on top of a circle with radius $=1$.

We can use a 45° reference angle 4 times

Do you remember the side lengths for the 30-60-90 triangle?

What are the leg lengths if the hypotenuse $=1$?

$\frac{1}{2}$

We can use a 60° reference angle 4 times

$$
(-,+) \quad(+,+)
$$

We can use a 30° reference angle 4 times
$(-,+) \quad(+,+)$

What about the "cardinal angles"?

We know the exact ratios for the following angles.

Angle	Sine	Cosine	Tangent
0	$\mathbf{0}$	1	0
90	1	0	undef
180	0	-1	0
270	-1	0	undef

$\operatorname{Tan} 0^{\circ}=y / x=\frac{0}{1}=0$
$\operatorname{Tan} 90^{\circ}=y / x=\frac{1}{0}=$ undefined
The tangent function does NOT have a domain of "all real numbers".

Can you quickly come up with the exact ratio? Green colored angles use a reference angle of 90. Red colored angles use a reference angle of 30 .

Black colored angles use a reference angle of 45 .
Blue colored angles use a reference angle of 60.

What happens if the hypotenuse does not equal 1 ?
$\operatorname{Cos} \theta=?$

$$
\begin{aligned}
& \cos \theta=\frac{A C}{6} \\
& A C=? \\
& A C^{2}+5^{2}=6^{2} \\
& A C^{2}=36-25 \\
& A C=\sqrt{11} \\
& \cos \theta=\sqrt{11} / 6
\end{aligned}
$$

For trig problems on the x - y plane:
We must use the complete ratio (opp/hyp, adj/hyp)

$$
\begin{gathered}
r^{2}=x^{2}+y^{2} \\
y \quad r=\sqrt{x^{2}+y^{2}} \\
\sin \theta=\frac{y}{\sqrt{x^{2}+y^{2}}}
\end{gathered}
$$

$$
\cos \theta=\frac{x}{\sqrt{x^{2}+y^{2}}}
$$

$$
\operatorname{Cos} \theta=x
$$

$\operatorname{Tan} \Theta=y / x$

$$
\tan \theta=\frac{y}{x}
$$

A typical x-y plane trig. problem:

What is the sine ratio of an angle whose terminal side passes through the point $(2,-5)$ on the $x y$-plane?

1. Build a right triangle with the reference angle being "theta" (the angle whose terminal side passes through (2, -5)
2. Use the sine equation:

$$
\begin{aligned}
& \sin \theta=\frac{y}{\sqrt{x^{2}+y^{2}}} \\
& \sin \theta=\frac{-5}{\sqrt{(2)^{2}+(-5)^{2}}} \\
& \sin \theta=\frac{-5}{\sqrt{29}} * \frac{\sqrt{29}}{\sqrt{29}}
\end{aligned}
$$

3. Rationalize the denominator.

$$
\sin \theta=\frac{-5 \sqrt{29}}{29}
$$

Another typical x-y plane trig. problem:

If the cosine ratio is $5 / 6$, and the terminal side of the angle is in quadrant III, what is the sine ratio of the angle?

1. Build a right triangle with the reference angle being "theta" (the angle whose terminal side passes through ($-5, \mathrm{y}$) that has a hypotenuse of 6 .
2. Use the sine equation:

$$
\sin \theta=\frac{y}{r} \quad \sin \theta=\frac{y}{6}
$$

3. Solve for ' y '. $\quad r^{2}=x^{2}+y^{2}$

$$
\begin{gathered}
36=25+y^{2} \\
y=\sqrt{11}
\end{gathered}
$$

4. y-values are negative in Q-III

$$
\sin \theta=\frac{-\sqrt{11}}{6}
$$

Ranges of the Trigonometric Functions $\quad \operatorname{Sin} \boldsymbol{\theta}=\mathbf{y}$

The sine of an angle is the y-value of the point as it rotates around the unit circle. $-1<\operatorname{Sin} \theta<1$

270

Ranges of the Trigonometric Functions $\boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}=\mathbf{x}$

The cosine of an angle is the x-value of the point as it rotates around the unit circle. $-1<\cos \theta<1$

270

Ranges of the Trigonometric Functions $\sec \theta=1 / \mathbf{x}$

The secant of an angle is the reciprocal of the cosine ratio. Therefore x cannot equal zero.

The reciprocal of a number between 0 and 1 is greater than 1 .

The reciprocal of a number between 0 and -1 is less than -1 .

Interval notation equivalent: $\quad x=(-\infty,-1] U[1, \infty)$

Ranges of the Trigonometric Functions $\csc \theta=\mathbf{1 / y}$

The secant of an angle is the reciprocal of the cosine ratio. Therefore x cannot equal zero.

The reciprocal of a number between 0 and 1 is greater than 1 .

The reciprocal of a number between 0 and -1 is less than -1 .

Interval notation equivalent: $\quad \mathrm{y}=(-\infty,-1] U[1, \infty)$

Which is possible?

1. $\sin \Theta=0.568$ yes
2. $\sin \Theta=-2.1$
no
3. $\cos \theta=1.6$
no
4. $\sec \Theta=0.5$
no
5. $\sec \Theta=-1.568$ yes
6. $\csc \Theta=-3.1 \quad$ yes
7. $\csc \Theta=-0.561$ no
