PreCalculus Algebra Cynthia Young

Chapter 4.2 Right Triangle Trigonometry

TRIGONOMETRIC FUNCTIONS OF ANGLES

4.1
Angle Measure

4.2
Right Triangle
Trigonometry

4.3
Trigonometric
Functions of Angles

4.5

The Law of Cosines

- Degrees and

Radians

- Coterminal Angles
- Arc Length
- Area of a Circular Sector
- Linear and Angular Speeds
- Right Triangle

Ratios

- Evaluating

Trigonometric Functions Exactly for Special Angles

- Solving Right Triangles

- Solving Oblique Triangles: Four Cases
- The Law of Sines
- Solving Oblique Triangles Using the Law of Cosines
- The Area of a Triangle

Chapter 4 Section 2 Right Angle Trigonometry

DEFINITION

Trigonometric Functions (Alternate Form)

For an acute angle θ in a right triangle:

$$
\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }} \cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }} \tan \theta=\frac{\text { opposite }}{\text { adjacent }}
$$

and their reciprocals:

$$
\begin{aligned}
& \csc \theta=\frac{1}{\sin \theta}=\frac{\text { hypotenuse }}{\text { opposite }} \\
& \sec \theta=\frac{1}{\cos \theta}=\frac{\text { hypotenuse }}{\text { adjacent }} \\
& \cot \theta=\frac{1}{\tan \theta}=\frac{\text { adjacent }}{\text { opposite }}
\end{aligned}
$$

Isosceles Right Triangle: a right triangle with two sides that are congruent. 1) Find the measures of the base angles.

$$
\begin{aligned}
& y^{\circ}+y^{\circ}+90=180 \\
& 2 y^{\circ}=90 y=45^{\circ}
\end{aligned}
$$

2) " X " can be any number. To make it really easy, lets just make $x=1$.
3) Solve for ' h '.

$$
\begin{gathered}
a^{2}+b^{2}=c^{2} \\
1^{2}+1^{2}=c^{2} \\
2=c^{2} \\
c=\sqrt{2}
\end{gathered}
$$

"One-One-Two-Root"

Use scale factors or proportions to solve for the lengths of sides of similar 45-45-90 right triangles.

Write a proportion (equation where a fraction equals a fraction)

$$
\begin{gathered}
\frac{3 \sqrt{14}}{\sqrt{2}}=\frac{x}{1} \\
\frac{3 \sqrt{2} \sqrt{7}}{\sqrt{8}}=x \\
x=3 \sqrt{7}
\end{gathered}
$$

Use scale factors or proportions to solve for the lengths of sides of similar 45-45-90 right triangles.

Write a proportion (equation where a fraction equals a fraction)

$$
\begin{gathered}
\frac{4 \sqrt{10}}{\sqrt{2}}=\frac{x}{1} \\
\frac{4 \sqrt{2} \sqrt{5}}{\sqrt{8}}=x \\
x=4 \sqrt{5}
\end{gathered}
$$

By constructing angle bisector of the top angle of a 60-60-60 equilateral triangle, two triangles are formed.

Are the two triangles congruent? Why? ASA

Corresponding parts of congruent triangles are congruent (CPCTC) (all remaining corresponding pairs of angles and sides are congruent).

Bottom legs (of the right triangles) are congruent so each is $1 / 2$ the total of the original triangle's bottom length).

Length $=1$ and length $=1$

We now have a 30-60-90 triangle.

$$
\begin{aligned}
& \text { Solve for ' } x \text { '. } \\
& a^{2}+b^{2}=c^{2} \\
& x^{2}+1^{2}=2^{2} \\
& x^{2}=4-1 \\
& x^{2}=3 \\
& x=\sqrt{3}
\end{aligned}
$$

30-60-90 Right Triangle Solve with a proportion

Write a proportion (equation where a fraction equals a fraction)

Special Triangles

Trigonometric Function Values for Special Angles

$\boldsymbol{\theta}$							$\boldsymbol{\operatorname { c o t } \theta}$
Degrees	Radians	$\boldsymbol{\operatorname { s i n } \theta}$	$\boldsymbol{\operatorname { c o s } \theta}$	$\boldsymbol{\operatorname { t a n } \theta}$	$\boldsymbol{\operatorname { s e c }} \boldsymbol{\operatorname { c s c } \theta}$		
30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$	$\frac{2 \sqrt{3}}{3}$	2
45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1	$\sqrt{2}$	$\sqrt{2}$
60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2 \sqrt{3}}{3}$

Solving Right Triangles

Solve the right triangle-find a, b, and θ.

Solution:

Step 1 Solve for $\boldsymbol{\theta}$.

$$
\begin{array}{r}
\theta+56^{\circ}=90^{\circ} \\
\theta=34^{\circ}
\end{array}
$$

Step 2 Solve for a.

$\cos 56^{\circ}=\frac{a}{15}$
$a=15 \cos 56^{\circ}$
$a \approx 8.38789$
$a \approx 8.4 \mathrm{ft}$

Step 3 Solve for b.

$$
\sin 56^{\circ}=\frac{b}{15}
$$

$$
b=15 \sin 56^{\circ}
$$

$$
b \approx 12.43556
$$

$b \approx 12 \mathrm{ft}$

Step 4 Check.

$$
\begin{aligned}
& \sin 34^{\circ} \stackrel{?}{=} \frac{8.4}{15} \\
& 0.5592 \approx 0.56 \\
& \cos 34^{\circ} \stackrel{?}{=} \frac{12}{15} \\
& 0.8290 \approx 0.80 \\
& \tan 34^{\circ} \stackrel{?}{=} \frac{8.4}{12} \\
& 0.6745 \approx 0.70
\end{aligned}
$$

Solving Right Triangles given two sides
Solve the right triangle-find a, α, and β.

$$
\begin{aligned}
& \sin \beta=\frac{o p p}{h y p}=\frac{19.67 c \not c}{37.21 c k} \\
& \sin \beta=0.5286 \\
& \sin ^{-1}(\sin \beta)=\sin ^{-1}(0.5286)
\end{aligned}
$$

$$
\beta=37.9
$$

$$
\alpha=180-\beta
$$

$$
\alpha=148.1
$$

$$
\begin{gathered}
\cos \beta=\frac{a d j}{h y p} \\
\cos 37.9=\frac{a}{37.21 \mathrm{~cm}}
\end{gathered}
$$

$$
0.7891=\frac{a}{37.21 \mathrm{~cm}}
$$

$$
a=29.4 \mathrm{~cm}
$$

Using Bearing

In navigation, the word bearing means the direction in which a vessel is pointed. Heading is the direction in which the vessel is actually traveling. Heading and bearing are only synonyms when there is no wind. Direction is often given as a bearing, which is the measure of an acute angle with respect to the north-south vertical line. "The plane has a bearing of $\mathrm{N} 20^{\circ} \mathrm{E}$ " means that the plane is pointed 20° to the east of due north.

A jet takes off bearing $\mathrm{N} 28^{\circ} \mathrm{E}$ and flies 5 miles, and then makes a left $\left(90^{\circ}\right)$ turn and

 flies 12 miles further. If the control tower operator wants to locate the plane, what bearing should she use?-Notice that the bearing (direction the plane is pointed) is relative to north. We can assume that the position of the control tower is at the location where the plane took off.
-We can draw a right triangle with leg lengths 5 and 12 miles since the plane turned 90 degrees to the left between the initial bearing of 28 N and the next bearing.
-We can calculate the bottom angle of the right triangle using the tangent ratio.

$$
\theta=\tan ^{-1}\left(\frac{12}{5}\right)=67.4
$$

To find the plane's bearing from the control tower, we must subtract the plane's initial bearing from theta. $\quad \beta=67.4-28 \quad \beta=39.4$
We can describe the bearing as 39.4 degrees to the west of north: (N 39.4 W) or using the true direction it is 39.4 degrees to the left of north (39.4 less than 360) or 320.6 "true."

