Math-1050 Session \#9 (4.5: Quadratic Inequalities)

Property of Inequality

If you perform the same mathematical operation to the left and right sides of the inequality ($<,>, \leq, \geq$) then the rewritten inequality is equivalent to the original inequality Provided that if you multiply or divide by a negative number you must switch the direction of the inequality. (Here's why:

$$
\begin{array}{r|}
x-4 \ngtr 8 \\
+4
\end{array}+4 .
$$

$$
\begin{aligned}
& 5 \ngtr 1 \\
& *(-1) *(-1) \\
& \hline-5>-1 \text { (not true) } \\
&-5<-1 \quad \text { (true) }
\end{aligned}
$$

Compound Inequality: the result of combining two simple inequalities with the logical words "and" or "OR".

$$
x \leq-2 \text { "OR" type }
$$

Is -3 a solution?
Or means: the numbers that satisfy either condition will make the compound inequality "true".

$x=(-\infty,-2] \quad U(1, \infty)$
"AND" type
$x>3$ and $x \leq 7$
Is -3 a solution?
AND means: the numbers must that satisfy both conditions will make the compound inequality "true".

$$
\begin{gathered}
3456 \\
x=(3,7]
\end{gathered}
$$

"union" symbol ("or")

Solve and graph the compound inequality:
Solve each simple inequality separately.

$$
\begin{array}{cccc}
2 x+3 \leq 5 & \text { or } & x-3>2 \\
-3-3 & & +3+3 \\
2 x \leq 2 & \text { or } & x>5 \\
\div 2 \div 2 & & \\
x \leq 1 & \text { or } & x>5
\end{array}
$$

Solve: $x-4<3$ and $x+3 \geq 5$

To solve: find the values of the variable that make the both inequalities true ("and" inequality).

Three Ways to write the solution to an inequality:

1. Simplified inequality

Another way to write this is:

$$
x>3 \text { and } x<5
$$

$$
3<x<5
$$

2. Graph (number line for a single variable inequality)

3. Interval notation (brackets/parentheses)
$(3,5)$

Solve: $2 x-3 \leq 3 \quad$ or $\quad 2 x-5>5$
 $$
x \leq 3 \quad \text { or } \quad x>5
$$

The "boundary numbers" $\quad x=3 \quad x=5$
separate the solution from the non-solution.
The solution is usually either:

1) Between the boundary numbers or
2) Outside of the boundary numbers

The shaded part of the graph is the solution.

1. Find the boundary numbers: (Solve the equation)

$$
\begin{array}{ll}
0>x^{2}-x-12 & 0=(x-4)(x+3) \\
0=x^{2}-x-12 & x=4, \quad-3
\end{array}
$$

2. The solution is usually either:
1) Between the boundary numbers or

2) Outside of the boundary numbers

The solution is usually either:

$$
0>x^{2}-x-12
$$

1) Between the boundary numbers or

2) Outside of the boundary numbers

3. Test a value to see if it is a solution. Zero is often the best number to test.

$$
0>(0)^{2}-(0)-12
$$

$0>-12$ Is " 0 " a solution? (does it make the inequality true?
The shaded part of the graph is the solution
\rightarrow we must pick the option that "shades" the number " 0 ".

$$
-3<x<4
$$

Steps to solve the Inequality $0>x^{2}-x-12$

1. Find the boundary numbers: (Solve the equation)
2. The solution is usually either:
a) Between the boundary numbers or
b) Outside the boundary numbers
3. Test a number to see if it is a solution of the inequality: If a solution, pick the number line that shades this number If not a solution, pick the number line that doesn't shade
4. Answer the question
a) Graph (if asked)
b) Write solution in simplified inequality form (if asked)
c) Write solution in interval form (if asked).

Solve $\quad 0<x^{2}-9$

1. Find the boundary numbers: (solve equation)

$$
0=(x-3)(x+3) \quad x=-3,3
$$

2. The solution is either:
a) Between the boundary numbers or

b) Outside of the boundary numbers

3. Test a number (\rightarrow " 0 ")
$(0)^{2}-9>0$
" 0 " is not a solution.
4. Solution is: $\quad(-\infty,-3) \cup(3, \infty)$

Solve $0<x^{2}-9$
Graph the general shape of the equation. $y=x^{2}-9$
\rightarrow Positive lead coefficient, even degree
\rightarrow Up on left and right
\rightarrow No even multiplicity zeroes $y=(x-3)(x+3)$

Where is the graph "positive"? Where is the graph "negative"?
\rightarrow you could solve the inequality by looking at the sign of ' y ' from the graph!!!

Where is the function positive? (where is $f(x)>0$?)

$$
0<x^{2}-x-2
$$

$$
\begin{gathered}
f(x)=(x+1)(x-2) \\
0=(x+1)(x-2) \\
x=-1 \quad x=+2
\end{gathered}
$$

$\longleftarrow y=0$

Sign Chart: a number line labeled so that the output value (+/-) is identified.

$$
(+) \quad(-) \quad(+)
$$

Where is $\mathrm{f}(\mathrm{x})>0 ? \quad f(x)>0$ for $x=(-\infty,-1) \cup(2, \infty)$

