Math-1050 Session \#8

Textbook:

4.3: Quadratic Functions and Their Properties, Quadratic Models;
4-4: Building Quadratic Functions from Data

Interpret the transformation then graph the function

$$
\mathrm{k}(\mathrm{x})=(x+2)^{2}-3
$$

$$
g(x)=-2(x-3)^{2}+4
$$

What is the equation that has been graphed?

Vertex form $\quad y=a(x-h)^{2}+k \quad y=(x+3)^{2}-8$

1. Find the zeroes of the function.

$$
\text { Let } \mathrm{y}=0 \quad 0=(x+3)^{2}-8
$$

Isolate the squared term

$$
\begin{aligned}
& 8=(x+3)^{2} \text { "take square roots" } \\
& \sqrt{8}=\sqrt{(x+3)^{2}} \\
& \pm \sqrt{8}=x+3 \text { Simplify the radical }
\end{aligned}
$$

$$
\pm \sqrt{2 * 2 * 2}=x+3
$$

$\pm 2 \sqrt{2}=x+3$ Solve for ' x '

$$
x=-3 \pm 2 \sqrt{2}
$$

x-coord of vertex

$$
y=a(x-p)(x-q) \quad y=(x+4)(x-2)
$$

The y-value of an x-intercept always equals Zero

$$
\begin{gathered}
0=(x+4)(x-2) \\
0=A * B
\end{gathered}
$$

Zero Product Property: either $(x+4)=0$ or $(x-2)=0$

$$
\begin{array}{cc}
x+4=0 & x-2=0 \\
x=-4 & x=+2
\end{array}
$$

X-coord. of vertex is $1 / 2$-way between the two x-intercepts.

$$
x_{\text {vertex }}=\frac{-4+2}{2}=-1
$$

Forms of the Quadratic Equation

X-coord. of vertex is " h " $h=-b / 2 a$

$$
y=a x^{2}+b x+c
$$

Standard form

Vertex form

$$
f(x)=a(x-h)^{2}+k \xlongequal{\text { X-coord. of vertex is }} y=a(x-p)(x-q)
$$

$$
k=f(-b / 2 a)
$$

Factoring

Intercept Form

 two x-intercepts.
Section 4.3 Focuses on the Standard Form Quadratic

Remember the Quadratic Formula?

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
x=\frac{-b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}
$$

What is the purpose of the formula?

The ' x ' in the formula are the x-intercepts of the standard form equation. $y=a x^{2}+b x+c$

$$
x_{\text {vertex }}=\frac{-b}{2 a} \quad y_{\text {vertex }}=f\left(\frac{-b}{2 a}\right)
$$

What is the maximum/minimum function value?

If: a>0 parabola opens upward $\rightarrow y_{\text {vertex }}$ is a maximum function value.

Axis if Symmetry: The vertical line divides the parabola in to mirror images.

On the next slide we use the quadratic formula to find x intercepts (of the standard form quadratic equation).

$$
y=x^{2}-6 x+4
$$

$$
x_{\text {axis of sym. }}=-b / 2 a
$$

$$
\begin{array}{cr}
y=a x^{2}+b x+c \\
y=x^{2}-6 x+4 & x=\frac{6}{2} \pm \frac{\sqrt{36-16}}{2} \\
a=1 \quad \mathrm{~b}=-6 \quad \mathrm{c}=4 \\
x=\frac{-b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a} & x=3 \pm \frac{\sqrt{20}}{2} \\
x=\frac{-(~)}{2(~)} \pm \frac{\sqrt{()^{2}-[4()()]}}{2(~)} & x=3 \pm \frac{\sqrt{4} \sqrt{5}}{2} \\
x=\frac{-(-6)}{2(1)} \pm \frac{\sqrt{(-6)^{2}-[4(1)(4)]}}{2(1)} & x=3 \pm \frac{2 \sqrt{5}}{2} \\
x & x=3 \pm \sqrt{5}
\end{array}
$$

If you don't replace letters with parentheses then plug numbers into parentheses you WILL make sign errors.

1) What is the axis of symmetry?

$$
y=x^{2}-6 x+4
$$

2) What is the vertex?

3) What are the x-intercepts?

$$
\begin{aligned}
& \begin{array}{l}
x_{\text {axis of sym. }}=\frac{-b}{2 a} \\
=\frac{-(-6)}{2(1)} \\
x_{\text {axis of sym. }}=3 \\
y_{\text {vertex }}=f\left(\frac{-b}{2 a}\right)=(3)^{2}-6(3)+4 \sqrt[y_{\text {vertex }}=3]{ }=-5 \\
x_{\text {intercepts }}=\frac{-b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}=3 \pm \frac{\sqrt{(-6)^{2}-4(1)(4)}}{2(1)} \\
=3 \pm \frac{\sqrt{36-16)}}{2}=3 \pm \frac{\sqrt{20}}{2}=3 \pm \frac{\sqrt{4} \sqrt{5}}{2}=3 \pm \sqrt{5}
\end{array}
\end{aligned}
$$

What is the vertex form equation? $\quad y=a(x-h)^{2}+k$

$$
\begin{gathered}
y=x^{2}-6 x+4 \quad y=a x^{2}+b x+c \quad a=V S F=1 \\
x_{\text {vertex }}=\frac{-b}{2 a}=\frac{-(-6)}{2(1)} \quad x_{\text {vertex }}=3 \\
y_{\text {vertex }}=f\left(\frac{-b}{2 a}\right)=(3)^{2}-6(3)+4 \quad y_{\text {vertex }}=-5 \\
y \\
y=a(x-h)^{2}+k \\
y=(x-3)^{2}-5
\end{gathered}
$$

1) What is the axis of symmetry?

2) What is the vertex?

$$
y=2 x^{2}-4 x+5
$$

3) What are the x-intercepts?

$$
\begin{aligned}
& \begin{array}{l}
x_{\text {axis of sym. }}=\frac{-b}{2 a} \\
=\frac{-(-4)}{2(2)} \\
y_{\text {vertex }}=f\left(\frac{-b}{2 a}\right) \\
x_{\text {axis of sym. }}=1 \\
x_{\text {vertex }}=1
\end{array} \\
& x_{\text {intercepts }}=\frac{-b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}=1 \pm \frac{\sqrt{(-4)^{2}-4(2)(5)}}{2(2)} \\
& =1 \pm \frac{\sqrt{16-40)}}{2}=1 \pm \frac{\sqrt{-24}}{2}=1 \pm \frac{\sqrt{4} \sqrt{-1} \sqrt{6}}{2} \\
& =1 \pm i \sqrt{6}
\end{aligned}
$$

What is the vertex form equation? $\quad y=a(x-h)^{2}+k$

$$
\begin{gathered}
y=2 x^{2}-4 x+5 \quad y=a x^{2}+b x+c \\
x_{\text {vertex }}=\frac{-b}{2 a}=\frac{-(-4)}{2(2)} \quad x_{\text {vertex }}=1 \\
y_{\text {vertex }}=f\left(\frac{-b}{2 a}\right) \\
=2(1)^{2}-4(1)+5 \quad y_{\text {vertex }}=3 \\
y
\end{gathered}
$$

What is a function value? It is an output value of the function. What is a the maximum function value for the following:
(1) Graph: It is the \boldsymbol{y}-value of a point that is a "peak."
(2) x - y pairs or table of values:

It is the maximum \boldsymbol{y}-value in the collection of points.
(3) equation: Depends upon the function family:

$$
\begin{aligned}
& f(x)=-(x+1)^{2}+3 \quad y \text {-value of the vertex } \\
& g(x)=-|x|-5 \quad y \text {-value of the vertex } \\
& k(x)=-3 \sqrt{x-2}+1 \quad y \text {-value of the endpoint }
\end{aligned}
$$

The maximum function value in the range is the maximum function value.

$$
\text { Range: } y=(-\infty, 5]
$$

Finding the equation of a parabola given one point and the vertex. Vertex: $(3,5), \quad$ point $(4,7)$
(1) Start with the "general" vertex form equation.

$$
y=a(x-h)^{2}+k
$$

(2) Substitute the vertex into the equation: $y=a(x-3)^{2}+5$
(3) Substitute the point into the equation: $7=a(4-3)^{2}+5$
(4) Solve for the vertical stretch factor "a" $7=a(4-3)^{2}+5$

$$
-2 \quad-2
$$

(5) Write the equation.

$$
2=a(1)^{2}
$$

$$
y=2(x-3)^{2}+5
$$

$$
a=V S F=2
$$

Section 4.4: Quadratic Modeling

Revenue (' R '): the amount of money obtained from the sale of an item (sale's price) (' p ').

The revenue depends upon how many items (' \mathbf{x} ') are sold.
Write an equation to relate these two quantities. $\quad R=p x$
If $p \uparrow$ and $x \uparrow$ then $R \uparrow$
If $p \downarrow$ and $x \downarrow$ then $R \downarrow$
If $p \uparrow$ and $x \downarrow$ does $R \uparrow$ or $R \downarrow$?????
If $p \downarrow$ and $x \uparrow$ does $R \uparrow$ or $R \downarrow$?????

The Law of Demand: price (' \mathbf{p} ') and number of items sold (' x ') are related.

Texas Instrument Calculators $\quad x=21,000-150 p$
$R=p x$
(1) Write revenue as a function of price.
(2) What price gives maximum revenue?
(3) What revenue results from charging the prince found in \#2?
(4) How many units " x " will be sold at this price?

