Math-1050

Session 5 Properties of Functions (Textbook Section 3.3)

Which functions are symmetric about the y-axis?

We call functions that are symmetric about the 'y'-axis, even functions.

There are 6 ways to show a relation between input and output.

(1) x-y pairs

Reflect an x-y pair across the y-axis.

If the <u>x-value</u> of an x-y pair is multiplied by $-1 \rightarrow$ the x-y pair is reflected across y-axis.

If you have <u>5 points</u> to reflect across the y-axis, you <u>multiply the</u> <u>x-values of all the points by (-1).</u> There are 6 ways to show a relation between input and output.

(2) equation How do you change the equation to reflect the graph across the y-axis?

If <u>all of the x-values</u> of the x-y pairs in the relation are multiplied by (-1) the relation's graph will be reflect across the y-axis.

 \rightarrow Replace 'x' in the equation with '-x' means you are multiplying every input value by (-1).

What does the square root equation look like...

f(-x) is a reflection of f(x) across <u>the y-axis</u>. 6 x -5 _4 _3 $q(x) = \sqrt{-x - 2}$ $g(x) = \sqrt{-(x+2)}$

-f(-x) is a reflection of
f(x) across the origin

What does the square root equation look like...

$$g(x) = -\sqrt{-x-2}$$

Even Function: if a function is reflected across the y-axis and it looks exactly like the <u>un-reflected version of itself</u>, the function is even.

Mathematically we say, "if f(x) = f(-x) then the function is even. \rightarrow The graph of f(x) looks exactly like the graph of f(-x).

Since $f(x) = x^2$ and f(x) = f(-x) for this function,

Therefore $f(x) = x^2$ is even. f(x) = |x|

Even Function: if a function is reflected across the y-axis and it looks exactly like the <u>un-reflected version of itself</u>, the function is even.

Mathematically we say, "if f(x) = f(-x) then the function is even. \rightarrow The graph of f(x) looks exactly like the graph of f(-x).

For the function f(x) = |x|, f(x) = f(-x)

Therefore f(x) = |x| is even.

"Test" the following function to see if it is "even."

 $=(-1)^{2}(x+2)^{2}$

$$g(x) = f(-x) = ((-x) - 2)^{2}$$
$$= [(-1)(x+2)]^{2}$$

Factor out -1 (still inside the square function)

Exponent of a Product Property

 $= (x+2)^{2}$ <u>Not even since reflection across y-axis is</u> $f(-x) \neq f(x)$ <u>not the same as the original equation</u> (or the graph) "Test" the following function to see if it is "even."

$$f(-x) = x^2 + 2$$

$$f(-x) = f(x)$$

The original equation looks exactly like the equation that has been reflected across the y-axis \rightarrow symmetric about the y-axis.

What transformations applied to an even function will cause to no longer be even?

Left or right shifts.

Which functions are symmetric about the origin?

We call functions that are symmetric about the origin, odd functions.

<u>"Odd" functions</u>: When the graph is reflected across the origin, it looks exactly like the original graph. Sequentially reflecting a graph across the x=axis and then the y-axis is a reflection across the origin.

<u>Describe algebraically how the parent function should be</u> transformed in order to <u>reflect</u> it across the <u>y-axis</u>.

k(x) = f(-x)What do you notice
about the two
reflections? $\underline{x-y \text{ pairs:}}$
multiply x-values
by (-1)y = (-x) = -xg(x) = (-x) = -xf(-x) = -f(x)

Mathematically we say "if f(-x) = -f(x) then f(x) is an <u>odd function.</u>"

→ The graph of -*f*(*x*) looks exactly like the graph of *f*(-*x*). f(x) = x $g(x) = \sqrt[3]{x}$

$$g(x) = -\sqrt[3]{x}$$
$$g(-x) = -g(x)$$

g(x) is an odd function

f(-x) = -x-f(x) = -xf(-x) = -f(x)

f(x) is an odd function

$$g(-x) = \sqrt[3]{-x}$$
$$g(-x) = \sqrt[3]{(-1)(x)}$$
$$g(-x) = \sqrt[3]{(-1)^*} \sqrt[3]{x}$$
$$g(-x) = -\sqrt[3]{x}$$

"Test" the following function to see if it is "even."

$$f(x) = 4(x-2)^{3} + 1$$

$$f(-x) = 4((-x) - 2)^{3} + 1$$

$$= 4(-x-2)^{3} + 1$$
 Factor out -1 (still inside the parentheses)

$$= 4[(-1)(x-2)]^{3} + 1$$
 Exponent of a Product Property

$$= 4(-1)^{3}(x-2)^{3} + 1$$

$$f(-x) = -4(x-2)^{3} + 1$$

$$-f(x) = (-1)[4(x-2)^{3} + 1]$$

$$f(-x) = -4(x-2)^{3} - 1$$

 $f(-x) \neq f(x)$ <u>Not odd since reflection across y-axis is not</u> <u>the same as a reflection across the x-axis.</u>

What transformations applied to an odd function will cause to no longer be odd?

