Math-1050

Session 5
Properties of Functions
(Textbook Section 3.3)

Which functions are symmetric about the y-axis?

We call functions that are symmetric about the ' y '-axis, even functions.

There are 6 ways to show a relation between input and output. (1) $x-y$ pairs

Reflect an $x-y$ pair across the y-axis.
If the x-value of an $x-y$ pair is multiplied by $-1 \rightarrow$ the $x-y$ pair is reflected across y-axis.

If you have 5 points to reflect across the y-axis, you multiply the x-values of all the points by (-1).

There are 6 ways to show a relation between input and output. (2) equation How do you change the equation to reflect the graph across the y-axis? If all of the x-values of the x - y pairs in the relation are multiplied by (-1) the relation's graph will be reflect across the y-axis.
\rightarrow Replace ' x ' in the equation with '- x ' means you are multiplying every input value by (-1).

$$
f(x)=(x-3)^{2}+2
$$

$$
\begin{aligned}
& f(-x)=((-x)-3)^{2}+2 \\
& f(-x)=(-x-3)^{2}+2 \\
& f(-x)=[(-1)(x+3)]^{2}+2 \\
& f(-x)=(-1)^{2}(x+3)^{2}+2 \\
& f(-x)=(x+3)^{2}+2
\end{aligned}
$$

$f(x)=\sqrt{x-2}$

What does the square root equation look like...
$-f(x)$ is a reflection of
$f(x)$ across the x-axis.

$$
g(x)=-\sqrt{x-2}
$$

$f(-x)$ is a reflection of $f(x)$ across the y-axis.

$-f(-x)$ is a reflection of $f(x)$ across the origin.

What does the square root equation look like...

$$
g(x)=-\sqrt{-x-2}
$$

$$
g(x)=-\sqrt{-(x+2)}
$$

Even Function: if a function is reflected across the y-axis and it looks exactly like the un-reflected version of itself, the function is even.
Mathematically we say, "if $f(x)=f(-x)$ then the function is even. \rightarrow The graph of $f(x)$ looks exactly like the graph of $f(-x)$.

$$
f(x)=x^{2}
$$

$$
\begin{gathered}
f(-x)=(-x)^{2} \\
f(-x)=(-x)(-x) \\
f(-x)=x^{2} \\
f(x)=x^{2}
\end{gathered}
$$

Since $f(x)=x^{2}$ and $f(x)=f(-x)$ for this function,
Therefore $f(x)=x^{2}$ is even.

$$
f(x)=|x|
$$

Even Function: if a function is reflected across the y-axis and it looks exactly like the un-reflected version of itself, the function is even.
Mathematically we say, "if $f(x)=f(-x)$ then the function is even. \rightarrow The graph of $f(x)$ looks exactly like the graph of $f(-x)$.

$$
f(x)=|x|
$$

$$
\begin{gathered}
f(-x)=|-x| \\
f(-x)=|(-1) * x| \\
f(-x)=|(-1)| *|x|) \\
f(-x)=|x| \\
f(x)=|x|
\end{gathered}
$$

For the function $f(x)=|x|, \quad f(x)=f(-x)$
Therefore $f(x)=|x|$ is even.
"Test" the following function to see if it is "even."
$f(x)=(x-2)^{2}$
$g(x)=f(-x)=((-x)-2)^{2} \quad$ Factor out -1 (still inside
the square function)
$=[(-1)(x+2)]^{2} \quad$ Exponent of a Product Property
$=(-1)^{2}(x+2)^{2}$
$=(x+2)^{2}$
Not even since reflection across y-axis is
$f(-x) \neq f(x) \quad \underline{\text { not the same }}$ the graph) as original equation (or
"Test" the following function to see if it is "even."
$f(x)=x^{2}+2$
$f(-x)=(-x)^{2}+2$

$f(-x)=x^{2}+2$
$f(-x)=f(x)$

The original equation looks exactly like the equation that has been reflected across the y-axis \rightarrow symmetric about the y-axis.

What transformations applied to an even function will cause to no longer be even?

Left or right shifts.

What is the equation...
$-f(x)$ is a reflection of $\quad f(-x)$ is a reflection of $f(x)$ across the x-axis. $\quad f(x)$ across the y-axis.

for an x -axis reflection?

$$
g(x)=-\sqrt{x}
$$

for a y-axis reflection?

$$
g(x)=\sqrt{-x}
$$

$-f(-x)$ is a reflection of $f(x)$ across the origin

What the equation for a reflection across the origin?

$$
g(x)=-\sqrt{-x}
$$

Which functions are symmetric about the origin?

We call functions that are symmetric about the origin, odd functions.

"Odd" functions: When the graph is reflected across the origin, it looks exactly like the original graph. Sequentially reflecting a graph across the $\mathrm{x}=$ axis and then the y -axis is a reflection across the origin.

$$
f(x)=x
$$

$$
g(x)=-f(x)
$$

x-y pairs:
multiply y-values by (-1)

$$
g(x)=-x
$$

Describe algebraically how the parent function should be transformed in order to reflect it across the y-axis.
$k(x)=f(-x)$
x-y pairs:
multiply x-values
by (-1)

$$
g(x)=(-x)=-x
$$

$$
f(-x)=-f(x)
$$

Mathematically we say "if $f(-x)=-f(x)$ then $f(x)$ is an odd function."
\rightarrow The graph of $-f(x)$ looks exactly like the graph of $f(-x)$. $f(x)=x$

$f(-x)=-x$
$-f(x)=-x$
$f(-x)=-f(x)$
$f(x)$ is an odd function

$$
g(x)=\sqrt[3]{x}
$$

$$
g(x)=-\sqrt[3]{x}
$$

$$
g(-x)=-g(x)
$$

$g(x)$ is an odd function

$$
\begin{aligned}
& g(-x)=\sqrt[3]{-x} \\
& g(-x)=\sqrt[3]{(-1)(x)} \\
& g(-x)=\sqrt[3]{(-1)^{*}} \sqrt[3]{x} \\
& g(-x)=-\sqrt[3]{x}
\end{aligned}
$$

"Test" the following function to see if it is "even."

$$
\begin{aligned}
& f(x)=4(x-2)^{3}+1 \\
& f(-x)=4((-x)-2)^{3}+1 \\
&= 4(-x-2)^{3}+1 \text { Factor out }-1 \text { (still inside the parentheses) } \\
&= 4[(-1)(x-2)]^{3}+1 \quad \text { Exponent of a Product Property } \\
&= 4(-1)^{3}(x-2)^{3}+1 \\
& f(-x)=-4(x-2)^{3}+1 \\
&- f(x)=(-1)\left[4(x-2)^{3}+1\right] \\
& f(-x)=-4(x-2)^{3}-1
\end{aligned}
$$

$f(-x) \neq f(x) \quad$ Not odd since reflection across y-axis is not the same as a reflection across the x-axis.

What transformations applied to an odd function will cause to no longer be odd?

