Math-1050

Session 4
Relations and Functions
(Textbook Sections 3.1 and 3.2)

Relation: A "mapping" or pairing of input values to outputs.

$$
x \rightarrow y
$$

Function: A relation where each input has exactly one output.

Is this a relation or a function? Both

Is the relation a function?

No: Katie has two different phone numbers What is Luke's phone number?

The phone number depends upon whom you are referring to \rightarrow Luke is the input, \# is the output.

Secondary Math-2 and Math-3: "Mapping"

Conceptually, this is a very simplistic representation. These aren't the only numbers that exist so it doesn't really tell the whole story within the context of the entire real number system.

Textbook definition: Let X and Y be two non-empty sets.

 A function from X into Y is a relation that associates with each element of X exactly one element of Y.
Real Numbers

Real Numbers

The inputs are a sub-set of real numbers. The output is a sub-set of the real numbers.

Math-3: Domain: the set made up of all of the input values that have corresponding output values.

Math-3: Range: the set made up of all of the corresponding output values.

Textbook: The set X is called the domain of the function. For each element of ' x ' in X, the corresponding element in ' y ' in Y is called the value of the function at ' x ', or the image of ' x '. The set of all images of the elements in the domain is called the range of the function. made up of all of the input values that have corresponding output values.

There are at least 6 ways to show a relation between input and output values.

Ordered Pairs: $\quad(-2,-1),(-1,1),(0,3)$

Data table: \quad| x | -2 | -1 | 0 |
| :---: | :---: | :---: | :---: |
| y | -1 | 1 | 3 |

Equation: $y=x+3 \quad$ Function notation: $f(0)=3$
Graph:

Which method does not specify the domain?

Does the Relation Represent a Function?

Ordered Pairs: $\quad(-2,-1),(-1,1),(0,3),(-2,4)$
No, input value ' -2 ' has more than one function value.

Yes.

No, input value ' 0 ' has more than one function value.

Does the Relation Represent a Function?

Equation: $f(x)=2 x+1$
$f(x+1)=2(x+1)+1$
$f(x+1)=2 x+3$
$f(x+1)=2 x+1+2$
$f(x+1)=f(x)+2$
If the input increases by ' 1 ', the output increases by ' 2 '

$$
\begin{aligned}
& f(x-1)=2(x-1)+1 \\
& f(x-1)=2 x-1 \\
& f(x+1)=2 x+1-2 \\
& f(x+1)=f(x)-2
\end{aligned}
$$

If the input decreases by ' 1 ', the output decreases by '2'

Each input will only have one function value.

Does the Relation Represent a Function?

Equation: $x^{2}+y^{2}=1$

$$
y^{2}=1-x^{2}
$$

$$
y= \pm \sqrt{1-x^{2}}
$$

$$
g(x)= \pm \sqrt{1-x^{2}}
$$

$$
g(0)= \pm \sqrt{1-(0)^{2}}
$$

$$
g(0)= \pm \sqrt{1}
$$

$$
g(0)= \pm 1
$$ operations) on the input value ' x ' to determine the corresponding output value ' y '.

Therefore, the output value ' y ' is dependent upon what the input value ' x ' is.
\rightarrow ' y ' is the dependent variable and ' x ' is the independent variable Which of the following equations is "' y ' is a function of x "?

$$
x=f(y)
$$

$$
f(x, y)=a
$$

$$
y=f(x)
$$

$$
2 x-y=-6
$$

$$
y=2 x+6
$$

Implicitly Defined Function:
"doing math to both ' x ' and ' y '.

Finding a Function Value $\quad f(x)=2 x+1$

 Input value

Find the Function Value $f(x)+f(3)$
Using the substitution principle: $(2 x+1)+(2(3)+1)$

$$
\text { Simplify: } \quad 2 x+8
$$

Therefore:

$$
f(x)+f(3)=2 x+8
$$

$f(x)=4 x^{2}+6 x \quad$ Find: $\frac{f(x+h)-f(x)}{h}$
By substitution: $\quad\left[4(x+h)^{2}+6(x+h)\right]-\left[4 x^{2}+6 x\right]$

$$
h
$$

simplify: $\frac{\left.\left[4\left(x^{2}+2 x h+h^{2}\right)+6 x+6 h\right)\right]-\left[4 x^{2}+6 x\right]}{h}$

$$
\frac{4\left(x^{2}+2 x h+h^{2}\right)+6 x+6 h-4 x^{2}-6 x}{h}
$$

$\frac{4 x^{2}+8 x h+4 h^{2}+6 x+6 h-4 x^{2}-6 x}{h}$
$\frac{4 x^{2}+8 x h+4 h^{2}+6 x+6 h-4 x^{2}-6 x}{h}$
$f(x)=4 x^{2}+6 x \quad$ Find: $\frac{f(x+h)-f(x)}{h}$
simplify: $\frac{4 x^{2}+8 x h+4 h^{2}+6 x+6 h-4 x^{2}-6 x}{h}$
common factor 'h'
$\frac{8 x h+4 h^{2}+6 h}{h}$
simplify
$\frac{h(8 x+4 h+6)}{h}$
$8 x+4 h+6$

Important Facts about Functions

(1) For each ' x ' in a domain of a function ' f ', there is exactly one image $f(x)$ in the range; however, an element in the range can result from more than one ' x ' in the domain.
(2) ' f ' is the symbol that we use to denote the function. It is symbolic of the equation that we use to get from an ' x ' in the domain to $f(x)$ in the range.
(3) If $y=f(x)$, then ' x ' is called the independent variable or argument of ' f ', and ' y ' is called the dependent variable or the value of ' f ' (function value) at ' x '.

Finding the Domain of a Function

An equation in the form $y=f(x)$ is the only symbolic form for a relation that does not specify what the domain and range are.

Which of the families of functions represented by their parent functions do not have the entire real number system ("all real numbers") as their domain?

$$
f(x)=x
$$

Square $f(x)=x^{2}$

Cube
$f(x)=x^{3}$

$$
f(x)=\sqrt{\text { Square Root }}=\sqrt{x}(x) \frac{\text { Logarithm }}{=\log _{b} x}
$$

$$
f\left(\frac{\text { Cube Root }}{x)=\sqrt[3]{x}}\right.
$$

Exponential
$f(x)=b^{x}$

Square Root

$$
f(x)=\sqrt{x} \longleftarrow \text { The } \begin{aligned}
& \text { radicand (expression under } \\
& \text { the radical) } \underline{\text { cannot be negative. }}
\end{aligned}
$$

Square roots of negative numbers are not in the real number syst. We say: $x \geq 0$ where ' x ' represents the radicand.

Find the Domain of $\quad f(x)=2-5 \sqrt{3-4 x}$
The radicand cannot be negative.

$$
\begin{aligned}
& 3-4 x \geq 0 \quad \text { Solve for ' } x \text { ' } \\
& 3 \geq 4 x \\
& \frac{3}{4} \geq x \\
& x \leq \frac{3}{4} \\
& D:\left\{x \left\lvert\, x \leq \frac{3}{4}\right.\right\}
\end{aligned}
$$

$$
f(x)=\log _{2} g^{\frac{\text { Logarithm }}{}} \quad \text { The logarand (expression to the right }
$$

The graph below shows that when $\mathrm{x} \leq 0$, there are no corresponding output values (function values, images of ' x ' in the range).

We say: $x>0$ where ' x ' represents the logarand.

Find the Domain of

$$
f(x)=3-5 \log _{2}(2 x-7)
$$

$f(x)=\log x \quad$ The logarand must be positive. $2 x-7>0$

$$
\text { Solve for ' } x \text { ' } \quad 2 x>7
$$

$$
D:\left\{x \left\lvert\, x>\frac{7}{2}\right.\right\} \quad x>\frac{7}{2}
$$

Rational
$f(x)=\frac{g(x)}{h(x)}$
Any number divided by ' 0 ' will not result in a real number. Essentially, the result is ∞ (infinity) which is not a number.

We say: $x \neq 0$ where ' x ' represents the denominator.
Find the Domain of $\quad f(x)=\frac{x^{2}-3 x+5}{x^{2}-9}$

$$
x^{2}-9 \neq 0
$$

(Property of Inequality is the same as the Property of Equality.)

$$
x^{2} \neq 9 \quad x \neq 3,-3 \quad D:\{x \mid x \neq 3, x \neq-3\}
$$

Combining Functions with Arithmetic Operations

$$
(f+g)(x)=f(x)+g(x) \quad \text { Adding Functions }
$$

$(f-g)(x)=f(x)-g(x) \quad$ Subtracting Functions

$$
(f \cdot g)(x)=f(x)^{*} g(x)
$$

Multiplying Functions
$\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$
Dividing Functions

Now we go to textbook section 3.1

Year	Price	Year	Price
1978	1.5651	1985	1.7540
1979	1.9829	1986	1.3459
1980	2.4929	1987	1.3274
1981	2.4977	1988	1.3111
1982	2.1795	1989	1.3589
1983	1.8782	1990	1.4656
1984	1.8310	1991	1.4973

> Both forms of the function, represent the same thing: The price of gasoline as a function of calendar year.

Which representation helps you to more easily see the trend in prices?

Function?
Domain = ?

Range = ?

List the intercepts.

$$
f(0), f\left(\frac{3 \pi}{2}\right), \text { and } f(3 \pi) ?
$$

How many intersections does the function have with the line $y=2$?
For $\quad x=4, f(x)=$?
Where is the function positive? \rightarrow For $f(x)>0, x=?$

