Math-1050
 Session \#35

13.3: Geometric Sequence

Arithmetic Sequence: each previous term has a number added to it to get the next number in the sequence..

n	1	2	3	4
a_{n}	1	4	7	10

Recursive formula: $a_{1}=1 \quad a_{n}=a_{n-1}+3 \quad$ For: $\mathrm{n}=2,3,4$

Explicit formula:

$$
\begin{aligned}
& a_{n}=3 n-2 \quad \text { For: } \mathrm{n}=1,2,3,4 \\
& a_{n}=3(n-1)+1
\end{aligned}
$$

Geometric Sequence: each previous term is multiplied by a number to get the next number in the sequence.
$a_{1}=6 \quad a_{n}=2 a_{n-1} \quad$ For: $\mathrm{n}=2,3,4$

"The output doubles (2 times as big)"

$$
\frac{a_{2}}{a_{1}}=\frac{12}{6}=2 \quad \frac{a_{3}}{a_{2}}=\frac{24}{12}=2
$$

We call ' 2 ' the "common ratio" \rightarrow "r"

$$
r=\frac{a_{n}}{a_{n-1}}=2
$$

recursively defined geometric sequence

n	1	2	3	4
a_{n}	6	12	24	48

Define $1^{\text {st }}$ term

Define "next" term

Define "counter" (finite or infinite sequence)

$$
\begin{array}{cll}
a_{1}=(\text { some \# }) & a_{n}=r^{*} a_{n-1} & \text { For: } \mathrm{n}=2,3,4 \\
a_{1}=6 & a_{n}=2 a_{n-1} & \text { For: } \mathrm{n}=2,3,4
\end{array}
$$

Where " r " is the
common ratio.

Explicitly defined geometric sequence

n	1	2	3	4
a_{n}	6	12	24	48

$$
a_{n}=a_{1} * r^{n-1}
$$

Where " r " is the common ratio.

$$
a_{n}=6(2)^{n-1} \quad \text { For: } \mathrm{n}=1,2,3,4
$$

Why use the exponent " $\mathrm{n}-1$ " in this formula?

Zero Exponent Property \rightarrow so that the coefficient will be the $1^{\text {st }}$ term

The geometric sequence is similar to which function?

Remember "initial value"? "growth factor"?
initial value: the coefficient of the exponential function.

$$
\begin{aligned}
f(0)=? \quad a=3 \quad & f(x)=3 * b^{x} \\
& f(x)=3(2)^{x}
\end{aligned}
$$

How is geometric sequence similar to the Exponential function?

$$
f(x)=3(2)^{x} \quad a_{n}=6(2)^{n-1} \text { For: } \mathrm{n}=1,2,3,4
$$

n	$\mathbf{0}$	1	2	3	4
a_{n}	3	6	12	24	48

Similar:

"common ratio" of geometric sequence same as
"growth factor" of exponential function

How is geometric sequence different from the Exponential function?

$$
f(x)=3(2)^{x}
$$

$$
a_{n}=6(2)^{n-1} \text { For: } \mathrm{n}=1,2,3,4
$$

n	0	1	2	3	4
a_{n}	3	6	12	24	48

Different:

"domain" of geometric sequence is the natural numbers
"domain" of exponential function is all real numbers

Exponential Function

Geometric Sequence

$$
f(x)=a b^{x} \quad a_{n}=a_{1} * r^{n-1}
$$

General Equation:

 Emphasizes the " 0 th term"$$
f(x)=3(2)^{x}
$$

$$
a_{n}=6(2)^{n-1}
$$

Are they equivalent equations?

$$
\begin{array}{cc}
f(x)=3(2)^{x} & a_{n}=6(2)^{n-1} \\
y=3(2)^{x} & y=6(2)^{x-1}
\end{array}
$$

By substitution (since $y=y$):

$$
\begin{gathered}
3(2)^{x}=6(2)^{x-1} \\
3(2)^{x}=6(2)^{-1}(2)^{x} \quad \text { Product of Powers Property } \\
3(2)^{x}=6\left(\frac{1}{2}\right)^{1}(2)^{x} \quad x^{2} x^{3}=x^{5} \\
3(2)^{x}=3(2)^{x} \quad \text { Negative Exponent Property } \\
3 \text { Yes, equivalent equations!!! }
\end{gathered}
$$

Your turn: Find both the recursive and explicit formulas for the following sequence of numbers.

n	1	2	3	4
a_{h}	5	15	45	135

Common ratio = 3

Recursive: $a_{1}=5 \quad a_{n}=3 a_{n-1}$ For: $\mathrm{n}=2,3,4$
Explicit

$$
a_{n}=5(3)^{n-1}
$$

For: $n \geq 1$
function

$$
f(x)=\frac{5}{3}(3)^{x}
$$

Prove that these are the same.

Prove that these are the same.

$$
\begin{array}{ll}
f(x)=\frac{5}{2}(2)^{x} & a_{n}=5(2)^{n-1} \\
y=5 * \frac{1}{2} *(2)^{x} & y=5(2)^{x-1} \\
y=5 *\left(\frac{1}{2}\right)^{1} *(2)^{x} & \\
y=5 * 2^{-1} *(2)^{x} & \\
y=5(2)^{x-1} &
\end{array}
$$

The sum of the first ' n ' terms of a geometric sequence

$$
\begin{aligned}
& \quad \operatorname{Sum}_{n}=S_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n} \\
& \sum_{k=1}^{n} a_{1} * r^{k-1}=a_{1}+a_{1} r+a_{1} r^{2}+\cdots+a_{1} r^{n-1} \\
& S_{n}=a_{1}+a_{1} r+a_{1} r^{2}+\cdots+a_{1} r^{n-1} \quad \begin{array}{l}
\text { Multiply bo } \\
\text { sides by ' } r \text { ' }
\end{array} \\
& r S_{n}=a_{1} r+a_{1} r^{2}+a_{1} r^{3}+\cdots+a_{1} r^{n} \quad \text { Subtract } \\
& \quad S_{n}-r S_{n}=a_{1}-a_{1} r^{n} \\
& \quad(1-r) S_{n}=\left(1-r^{n}\right) a_{1} \quad S_{n}=a_{1}\left(\frac{1-r^{n}}{1-\mathrm{r}}\right)
\end{aligned}
$$

Find the sum of the first ' n ' terms of the geometric sequence

$$
\begin{array}{lr}
a_{n}=a_{1} * r^{n-1} & \left\{a_{n}\right\}=\left\{\frac{1}{4}\left(\frac{1}{4}\right)^{n-1}\right\} \\
\left\{a_{n}\right\}=\left\{\left(\frac{1}{4}\right)^{n}\right\} & S_{n}=\frac{1}{4}\left(\frac{1-\left(\frac{1}{4}\right)^{n}}{\frac{3}{4}}\right) \\
S_{n}=a_{1}\left(\frac{1-r^{n}}{1-\mathrm{r}}\right) & S_{n}=\frac{1}{3}\left(1-\left(\frac{1}{4}\right)^{n}\right) \\
S_{n}=\frac{1}{4}\left(\frac{1-\left(\frac{1}{4}\right)^{n}}{1-\left(\frac{1}{4}\right)}\right) & S_{n}=\frac{1}{3}-\frac{1}{3}\left(\frac{1}{4}\right)^{n}
\end{array}
$$

Find the sum of the first ' n ' terms of the geometric sequence

$$
\begin{array}{lr}
a_{n}=a_{1} * r^{n-1} & \left\{a_{n}\right\}=\left\{3(2)^{n-1}\right\} \\
S_{n}=a_{1}\left(\frac{1-r^{n}}{1-\mathrm{r}}\right) & S_{n}=-3\left(1-2^{n}\right) \\
S_{n}=3\left(\frac{1-2^{n}}{1-2}\right) & S_{n}=-3+3\left(2^{n}\right)
\end{array}
$$

How big is the nth term as $n \rightarrow \infty$

$$
a_{n}=a_{1} * r^{n-1}
$$

$$
a_{n}=2^{n-1} \quad a_{n} \rightarrow \infty \quad a_{n}=\left(\frac{1}{2}\right)^{n-1} \quad a_{n} \rightarrow 0
$$

The sum of an infinite geometric sequence is called an Infinite Geometric SERIES:

$$
\sum_{k=1}^{\infty} a_{1} * r^{n-1}
$$

The sum of the first ' n ' terms of the geometric sequence

$$
S_{n}=a_{1}\left(\frac{1-r^{n}}{1-\mathrm{r}}\right)
$$

$$
S_{n}=\frac{a_{1}}{1-\mathrm{r}}-\frac{a_{1} r^{n}}{1-\mathrm{r}}
$$

$\sum_{k=1}^{\infty} a_{1} * r^{n-1}$

$$
S_{n}=\frac{a_{1}}{1-r}-\frac{a_{1} r^{n}}{1-r}
$$

An Infinite Geometric SERIES will approach a certain number if $|r|<1$

$$
\lim _{n \rightarrow \infty} S_{n}=\frac{a_{1}}{1-r}
$$

If $|r|<1$ we say the Infinite Geometric SERIES converges
to $\frac{a_{1}}{1-r}$

$\sum_{k=1}^{\infty} a_{1} * r^{n-1}$

Does the following series converge?

$$
\sum_{k=1}^{\infty} 3\left(\frac{3}{4}\right)^{n-1} \quad r=\frac{3}{4} \rightarrow \text { yes }
$$

If $|r|<1$ we say the Infinite Geometric SERIES converges
to $\quad \underline{a_{1}} \quad \underline{\text { What does the series converge to? }}$
$\sum_{k=1}^{\infty} a_{1} * r^{n-1}=\frac{a_{1}}{1-r}$

$$
\begin{aligned}
& \sum_{k=1}^{\infty} 3\left(\frac{3}{4}\right)^{n-1}=\frac{3}{1-\frac{3}{4}} \\
& =\frac{3}{\frac{1}{4}}=12
\end{aligned}
$$

Repeating Decimals $0.9999 \overline{9}$

$$
\begin{gathered}
=0.9+0.09+0.009+\cdots=\frac{9}{10}+\frac{9}{100}+\frac{9}{1000}+\cdots \\
\sum_{k=1}^{\infty} a_{1} * r^{n-1} \\
\sum_{k=1}^{\infty} \frac{9}{10^{k}}=\sum_{k=1}^{\infty} \frac{9}{10}\left(\frac{1}{10}\right)^{n-1}=\frac{a_{1}}{1-\mathrm{r}}=\frac{\frac{9}{10}}{1-\frac{1}{10}} \\
=\frac{\frac{9}{10}}{\frac{9}{10}}=1
\end{gathered}
$$

Pendulums A pendulum initially swings through an arc of 20 inches. After each swing, the following arc is 0.95 times the arc length of the previous arc length. Write the explicit formula for the arc length.

$$
a_{n}=a_{1} * r^{n-1}=20(0.95)^{\mathrm{n}-1}
$$

What is the $10^{\text {th }}$ arc length?

$$
a_{10}=20(0.95)^{10-1} \quad a_{10}=12.6 \mathrm{in}
$$

What is the total distance the pendulum traveled in 20 swings?

$$
\begin{aligned}
& \sum_{k=1}^{\infty} 20 *(0.95)^{n-1} \quad S_{n}=a_{1}\left(\frac{1-r^{n}}{1-\mathrm{r}}\right) \\
& S_{20}=20\left(\frac{1-(0.95)^{20}}{1-0.95}\right) \quad S_{20}=256.6 \mathrm{in}
\end{aligned}
$$

Pendulums
After how many swings will it have traveled 300 inches?

$300=20\left(\frac{1-(0.95)^{n}}{0.05}\right)$

$$
\frac{1}{4}=(0.95)^{n}
$$

$300=400\left(1-(0.95)^{n}\right)$
$n=\log _{0.95} \frac{1}{4}$
$\left.300=400-400(0.95)^{n}\right)$

$$
-100=-400(0.95)^{n}
$$

Pendulums

When it stops swinging, what is the total distance that the pendulum has swung?

$$
\begin{aligned}
& \sum_{k=1}^{\infty} a_{1} * r^{n-1} \\
& \sum_{k=1}^{\infty} 20 *(0.95)^{n-1}=\frac{a_{1}}{1-r} \\
& \quad=\frac{20}{1-0.95}=\frac{20}{0.05}=400 \mathrm{in}
\end{aligned}
$$

Annuity Is a sequence of regularly paid deposits to an account that (hopefully) pays interest.
If the deposit occurs at the same time the interest is paid (daily, monthly, quarterly, etc.), the annuity is called an ordinary annuity.
For once per year deposits, the amount of money in an
ordinary annuity is given by

$$
A=P \frac{(1+i)^{t}-1}{i}
$$

here ' f ' ' is the annual interest rate, ' P ' is the deposit amount, and ' t ' is the number of years.
Similar to compound interest, for more frequently than one/year deposits, the amount would be given by:

$$
A=P \frac{\left(1+\frac{i}{k}\right)^{k t}-1}{\frac{i}{k}}
$$

To avoid car payments, a wise investor decides to deposit money to an ordinary annuity that pays monthly interest at an annual rate of 3%.
How often will he/she deposit money to the annuity? monthly
How much should the investor deposit each month in order to have enough money to buy a $\$ 20,000$ in 3 years?

$$
A=P \frac{\left(1+\frac{i}{k}\right)^{k t}-1}{\frac{i}{k}} \quad 20000=P \frac{\left(1+\frac{0.03}{12}\right)^{12(3)}-1}{\frac{0.03}{12}}
$$

$$
20000=P(37.62)
$$

$$
P=\$ 531.63
$$

