Math-1050

Session \#35
Arithmetic Sequences

Your turn: Write a linear equation that $\quad y=m x+b$ contains the ordered pairs in the table below.

$\Delta y=2$

Slope $=m=\frac{\Delta \mathrm{y}}{\Delta \mathrm{x}}=2$

$$
y=2 x+b
$$

How do you find ' b '?
Method \#1: plug in an input-output pair.

$$
(5)=2(1)+b
$$

$$
3=b
$$

$$
y=2 x+3
$$

Method 2: find the " y-intercept" by going leftwards in the table to the "zero-eth" term.

$$
\left\{a_{k}\right\}=\{2 k+3: k=1,2,3, \ldots\}
$$

$$
y=m x+b \quad y=2 x+b \quad y=2 x+3
$$

\[

\]

y-intercept $=(0, b)$
y-intercept $=(0,3)$

Your turn: 1. Fill in the table.
2. Write a linear equation that contains the ordered pairs in the table below.

$$
y \text {-intercept }=(0, b)
$$

$$
y \text {-intercept }=(0,3)
$$

$$
\begin{aligned}
& \left\{b_{m}\right\}=\{2(m-1)+5\} \\
& y=m x+b \quad y=2 x+b \quad y=2 x+3
\end{aligned}
$$

Whoa, they're the same sequence!!!

$$
\begin{aligned}
& \left\{a_{k}\right\}=\{2 k+3: k=1,2,3, \ldots\} \\
& \left\{b_{m}\right\}=\{2(m-1)+5: m=1,2,3, \ldots\} \\
& \begin{array}{|r|r|r|r|r|r|r|}
\hline \mathrm{k} & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline a_{k} & 5 & 7 & 9 & 11 & 13 & 15 \\
\hline b_{m} & 5 & 7 & 9 & 11 & 13 & 15 \\
\hline
\end{array}
\end{aligned}
$$

Is this true?

$$
\begin{aligned}
& 2(x-1)+5=2 x+3 \text { yes } \\
& 2 x-2+5=2 x+3 \\
& 2 x+3=2 x+3
\end{aligned}
$$

Whoa, they're the same sequence!!!

$$
\begin{aligned}
& \left\{a_{k}\right\}=\{2 k+3: k=1,2,3, \ldots\} \text { Emphasizes "0th" term } \\
& \left\{b_{m}\right\}=\{2(m-1)+(5) m=1,2,3, \ldots\} \text { Emphasizes } 1^{\text {st }} \text { term } \\
& \begin{array}{|l|c|c|c|}
\hline \mathrm{x} & 0 & 1 & \\
\hline a_{x} & 3 & & \\
\hline b_{x} & & 5 \\
\hline
\end{array}
\end{aligned}
$$

Arithmetic Sequence: a sequence where there is a "constant difference" between each of the adjacent terms.

$$
\left\{a_{k}\right\}=\{(2 k+3: k=1,2,3, \ldots\} \quad y=(2) x+3
$$

k	1	2	3	4	5	6
a_{k}	5	7	9	11	13	15
$\underbrace{}_{2}-a_{1}=2$						
$a_{4}-a_{3}$	$=2$					

Arithmetic Sequence: each pair of adjacent terms has the same "common difference"

Note: the "common difference" becomes the slope of the linear equation passing through each ordered pair because the $1^{\text {st }}$ difference of the input is always ' 1 '.

$$
a_{1}=a
$$

$$
a_{2}=a_{1}+d
$$

$$
a_{3}=a_{2}+d \quad a_{3}=\left(a_{1}+d\right)+d \quad a_{3}=a_{1}+2 d
$$

$$
a_{4}=a_{3}+d \quad a_{4}=\left(a_{1}+2 d\right)+\mathrm{d} \quad a_{4}=a_{1}+3 d
$$

Explicitly Defined Arithmetic Sequence $a_{n}=a_{1}+d(n-1)$
$\left\{a_{k}\right\} \quad$ Where $a_{k}=\widehat{d}(k-1)+a_{0}$ (and $\mathrm{k}=1,2,3, \ldots$)
The kth term of the sequence is the common difference times ($k-1$) plus the first term of the sequence, with $k=1$, 2, 3,...

Explicitly define the following sequence of numbers.

	a_{n}
1	-9
2	-6
3	-3
4	0
5	3
6	6
7	9
8	12
9	15

$$
\begin{aligned}
& -9,-6,-3,0,3,6,9,12,15 \\
& \left\{a_{n}\right\}=\{3 n-12\} \\
& \left\{a_{n}\right\}=\{3(n-1)-9\}
\end{aligned}
$$

Which one is easier?
The second one since you don't have to go "backwards" to find the "zero^th" term.

Recursively Defined Sequences have two parts.

$$
b_{n}=b_{n-1}+2
$$

Specifies the initial Gives a way to show the relation element of the sequence.
between adjacent elements of the sequence.

Recursively Defined Sequences

$$
\begin{aligned}
& b_{1}=4 \\
& \underbrace{}_{n}=b_{n-1}+2 \\
& b_{2}=b_{1}+2
\end{aligned} \quad \begin{aligned}
& \text { For all } \mathrm{n}>1 \\
& b_{3}=b_{2}+2
\end{aligned}
$$

Is this an arithmetic sequence?
Yes, because a "common difference" is always added to the previous term to find the next term.

What is the common difference? $\quad d=2$
What is explicit formula for the sequence?

$$
a_{k}=d(k-1)+a_{1}
$$

$$
a_{k}=2(k-1)+4
$$

Two ways to write a formula to define the numbers in a sequence.

Explicitly Defined Sequence Recursively Defined Sequence

These two methods can be used for all sequences, not just arithmetic sequences.

Recursively Defined Arithmetic Sequence:

$$
\begin{gathered}
b_{1}=\text { number } \quad b_{n}=b_{n-1}+d \quad \text { For all } \mathrm{n}>1 \\
\mathrm{~d}=\text { common difference }
\end{gathered}
$$

Explicitly Defined Arithmetic Sequence:

$$
b_{n}=d(n-1)+b_{1} \quad \text { For all } \mathrm{n} \geq 1
$$

Find the recursive formula.

$$
\begin{gathered}
-9,-6,-3,0,3,6,9,12,15 \\
b_{1}=-9 \quad b_{n}=b_{n-1}+3 \quad \text { For } 1<\mathrm{n} \leq 9
\end{gathered}
$$

Find the Explicit formula

$$
b_{n}=\{3(n-1)-9: \text { for } \mathrm{n}=1,2,3, \ldots, 9\}
$$

$$
a_{4}=3 \quad a_{20}=35
$$

a) Find the common difference
c) Find the Recursive formula
b) Find the $1^{\text {st }}$ term
d) Find the Explicit formula

$$
\begin{array}{ll}
a_{n}=d(n-1)+a_{1} & a_{20}=d(20-1)+a_{1} \\
a_{4}=d(4-1)+a_{1} & 35=d(19)+a_{1}
\end{array}
$$

$$
3=d(3)+a_{1}
$$

Two equations, 2 unknowns \rightarrow solve the system of equations

$$
\left.\begin{array}{c}
3-d(3)=a_{1} \\
35-d(19)=a_{1}
\end{array}\right\} \begin{aligned}
& 3-3 d=35-18 d \\
& 15 d=30 \quad d=2
\end{aligned}
$$

Substitution $\rightarrow 3=d(3)+a_{1}$

$$
3=(2)(3)+a_{1}
$$

$$
a_{1}=-3
$$

$$
a_{4}=3 \quad a_{20}=35
$$

a) Find the common difference b) Find the $1^{\text {st }}$ term
c) Find the Recursive formula
d) Find the Explicit formula

$$
a_{n}=d(n-1)+a_{1} \quad d=2 \quad a_{1}=-3
$$

Recursive formula:

$$
a_{1}=-3 \quad a_{n}=a_{n-1}+2
$$

Explicit formula:

$$
a_{n}=2(n-1)-3
$$

Finding the Sum of the $1^{\text {st }}$ " n " terms of an Arithmetic Sequence

$$
\operatorname{Sum}_{n}=S_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}
$$

$$
\sum_{k=1}^{n} a_{k}=\sum_{k=1}^{n}\left[d(n-1)+a_{1}\right]=\frac{n}{2}\left[2 a_{1}+d(n-1)\right]
$$

$$
=\frac{n}{2}\left[a_{1}+a_{n}\right]
$$

Find the Sum of the $1^{\text {st }}$ " n " terms of the Arithmetic Sequence

$$
\left\{a_{n}\right\}=\{3 n-12\}
$$

$$
\sum_{k=1}^{n} a_{k}==\frac{n}{2}\left[a_{1}+a_{n}\right]=\frac{n}{2}[-9+(3 n-12)]
$$

$$
=\frac{n}{2}(3 n-21)
$$

