Math-1050

Session #34

Sequences

What is a <u>sequence</u>?

<u>Sequence</u>: an ordered progression of numbers (a list)

<u>Finite sequence</u>: a sequence that has a final term, therefore the total terms in the sequence can be counted. <u>example</u> 5, 10, 15, 20, 25, 30, 35

<u>Infinite sequence</u>: sequence that does not have a final term, so the number of terms is uncountable.

5, 10, 15,..., 35 number pattern continues between 15 and 35

2, 5, 8,... number pattern continues after '8' infinitely

How is a <u>sequence</u> a <u>relation</u> between <u>input</u> and <u>output</u>?

5, 10, 15, 20, 25

What are the input values?

The domain of a sequence is the "natural numbers"

k	a_k	The imput velue refere to the relative position of the
1	-9	term in the sequence (1 st 2 nd 3 rd etc.)
2	-6	
3	-3	
4	0	The range is the sequence itself (the set of all the
5	3	individual numbers of the sequence).
6	6	
7	9	
8	12	
9	15	

Represents a "generic" number in a sequence a_k named "a" which has <u>subscript</u> "k" to identify the "kth" term of the sequence.

 $a_3 = 5$ No French brackets and subscript '3' means the 3rd term of sequence 'a'.

Is the sequence given in the table <u>finite</u> or <u>infinite</u>?

 $b_2 = 4$

finite	n	1	2	•••	5
$b_2 = ?$	b_n	2	4	•••	10

$$-\{b_n\}$$
 = $\{2,4,6,...\}$ Is a sequence a relation? yes

10

8

6

4

2

Graph the relation.

Is this sequence a linear relation?

yes 10 8 6 4 2 2 3 5 1 4

<u>domain</u> = ? <u>Discrete domain</u> D = {x = 1, 2, 3, 4, 5} Is this sequence a line?

2 3

 $D = (-\infty, \infty)$ continuous domain

Domain = ?

5

4

<u>Discrete set of numbers</u>: a countable set of numbers Example: {1, 2, 3, 4, 5}

<u>Continuous set of numbers</u>: an infinite set of numbers that includes <u>every number</u> in an interval of numbers (with no "gaps"). Example (-5, 3]

<u>Arithmetic Sequence</u>: a sequence that is a linear relation.

$$\{a_k\}$$
 = $\{2k+3: k=1,2,3,...\}$ Defines a "rule" so that you can find the "kth" term

We call this method of defining the sequence "set-builder" notation.

Spoken: "the sequence 'a' is defined as 2k +3 with 'k' taking on the values 1, 2, 3, and so forth" Explicitly Defined Sequence: a formula that you can use to directly find any term in the sequence without having to find the preceding terms. $a_1 = (-1)^{1+1} (\frac{2}{1})$

$$-\{a_k\} = -\{(-1)^{k+1} \left(\frac{2}{k}\right)\} \qquad a_1 = 2 \\ a_2 = (-1)^{1+2} \left(\frac{2}{2}\right)$$

Write down the 1st six terms of the following sequence.

k	1	2	3	4	5	6
a_k	2	-1	2	_ 1	2	_1
	l		3	$-\frac{1}{2}$	5	3

Examples Sequences

<u>Running total</u>: if your car payment is \$200/month, a <u>running total</u> would look like:

Month	1	2	3	4
Total (\$)	200	400	600	800

1. Define this sequence explicitly and name it "C".

$$C_m = 200m$$
 (m = 1,2,3,4)

<u>Recursively</u> Defined Sequences have two parts.

Specifies the initial Gives a way to element of the show the relat sequence.

 $b_n = b_{n-1} + 2$ al Gives a way to show the relation between adjacent elements of the sequence. **Recursively** Defined Sequences

$$b_1 = 4$$
Find the 1st 5-terms
$$b_n = b_{n-1} + 2$$

$$b_2 = b_1 + 2$$

$$b_3 = b_2 + 2$$
of the sequence.

In order to find the 3rd term, we need to find out what the 2nd term is:

$$b_2 = b_1 + 2$$
 $b_2 = 4 + 2 = 6$ $b_3 = 6 + 2 = 8$
4, 6, 8, 10, 12,...

Define the following sequence of numbers <u>recursively</u>.

-9, -6, -3, 0, 3, 6, 9, 12, 15
$$b_1 = \begin{pmatrix} -9 \\ -9 \end{pmatrix} \quad b_n = b_{n-1} + 3 \quad \text{For } 1 < n \le 9$$

Explicitly defined:
$$b_n = \{3(n-1) - 9: \text{ for } n = 1,2,3,...,9\}$$

$$\{a_k\} = \left\{ 1, 3, 5, 7, 9 \right\} \left\{ \sum_{k=1}^{5} a_k = 1 + 3 + 5 + 7 + 9 \right\}$$

If we <u>add together all the terms of the sequence</u> we get something called a <u>series.</u>

$$\sum_{k=1}^{5} a_k = 26$$

Summation Notation uses Greek letter (capital) sigma

Carl Friedrich Gauss (1777 – 1855)

As a young student (7-10 years old) his class was asked to add the first 100 numbers,

1 + 2 + 3 + ... + 98 + 99 + 100 = ?

You have one minute \rightarrow what's the answer?

Karl immediately gave the answer: 5050.

How did he do it so fast?

How can we calculate the 100th triangular number?

This is Gauss's number!

The sum of the first 'n' integers is a triangular number.

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

$$\sum_{k=1}^{n} c \quad (\text{Where 'c' is a constant}) = c + c + c + c + c + \dots + c$$

$$\sum_{k=1}^{n} c = cn$$

$$\sum_{k=1}^{n} c = cn$$

 $\frac{\text{The sum of the first 'n' "perfect square integers"}}{\sum_{k=1}^{n} k^2 = 1^2 + 2^2 + 3^2 + \dots + n^2} = 1 + 4 + 9 + \dots + n^2}$ $= \frac{n(n+1)(2n+1)}{6}$

The sum of the first 'n' "perfect square integers"

$$\sum_{k=1}^{n} k^3 = 1^3 + 2^3 + 3^3 + \dots + n^3 = 1 + 8 + 27 + \dots + n^3$$
$$= \left(\frac{n(n+1)}{2}\right)^2$$

Using Properties of Series

Using Properties of Series

$$= 2\left(\frac{10(10+1)}{2}\right)^2 - 2\left(\frac{3(3+1)}{2}\right)^2$$
$$= 2(55)^2 - 2(6)^2 = 5978$$