Math-1050

Session \#34

Sequences

What is a sequence?

Sequence: an ordered progression of numbers (a list)
Finite sequence: a sequence that has a final term, therefore the total terms in the sequence can be counted.

$$
\text { example } 5,10,15,20,25,30,35
$$

Infinite sequence: sequence that does not have a final term, so the number of terms is uncountable.

Example: 2, 4, 6, 8, 10, ...
$5,10,15, \ldots, 35$ number pattern continues between 15 and 35
$2,5,8, \ldots$ number pattern continues after ' 8 ' infinitely

How is a sequence a relation between input and output?

$$
5,10,15,20,25
$$

What are the input values?

The domain of a sequence is the "natural numbers"

The input value refers to the relative position of the term in the sequence ($1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$, etc.)
$2-6$
$3-3$
40
0 The range is the sequence itself (the set of all the
53 individual numbers of the sequence).
66
79
$8 \quad 12$
915

Represents a "generic" number in a sequence
$a_{k} \quad$ named "a" which has subscript " k " to identify the "kth" term of the sequence.
$a_{3}=5 \quad$ No French brackets and subscript ' 3 ' means the $3^{\text {rd }}$ term of sequence ' a '.

Is the sequence given in the table finite or infinite?

$$
\begin{aligned}
& \quad \text { finite } \\
& b_{2}=? \\
& b_{2}=4
\end{aligned}
$$

n	1	2	\ldots	5
b_{n}	2	4	\ldots	10

$\left\{b_{n}\right\}=\{2,4,6, \ldots\}$ Is a sequence a relation? yes
Graph the relation.

Is this sequence a linear relation?

domain $=$? Discrete domain
$D=\{x=1,2,3,4,5\}$

Is this sequence a line?

Domain $=$?
$D=(-\infty, \infty)$
continúous domain

Discrete set of numbers: a countable set of numbers

Example: $\{1,2,3,4,5\}$

Continuous set of numbers: an infinite set of numbers that includes every number in an interval of numbers (with no "gaps"). Example (-5, 3]

Arithmetic Sequence: a sequence that is a linear relation.

How is an Arithmetic sequence similar to a line? Constant slope (or $1^{\text {st }}$ difference is constant)
How is an Arithmetic sequence different from a line?
Discrete domain vs. continuous domain

$\left\{a_{k}\right\}=\{2 k+3: k=1,2,3, \ldots\}$ Defines a "rule" so that you can find the "kth" term

We call this method of defining the sequence "set-builder" notation.

Spoken: "the sequence ' a ' is defined as $2 \mathrm{k}+3$ with ' k ' taking on the values $1,2,3$, and so forth'

Explicitly Defined Sequence: a formula that you can use to directly find any term in the sequence without having to find the preceding terms.

$$
a_{1}=(-1)^{1+1}\left(\frac{2}{1}\right)
$$

$\left\{a_{k}\right\}=\left\{(-1)^{k+1}\left(\frac{2}{k}\right)\right\} \quad \begin{aligned} & a_{1}=2 \\ & a_{2}=(-1)^{1+2}\left(\frac{2}{2}\right)\end{aligned}$
Write down the $1^{\text {st }}$ six terms of the following sequence.

Examples Sequences

Running total: if your car payment is $\$ 200 /$ month, a running total would look like:

Month	1	2	3	4
Total (\$)	200	400	600	800

1. Define this sequence explicitly and name it " C ".

$$
C_{m}=200 m \quad(\mathrm{~m}=1,2,3,4)
$$

Recursively Defined Sequences have two parts.

Recursively Defined Sequences

$$
b_{1}=4
$$

Find the $1^{\text {st }} 5$-terms

$$
b_{n}=b_{n-1}+2
$$ of the sequence.

In order to find the $3^{\text {rd }}$ term, we need to find out what the $2^{\text {nd }}$ term is:

$$
\begin{gathered}
b_{2}=b_{1}+2 \quad b_{2}=4+2=6 \quad b_{3}=6+2=8 \\
4,6,8,10,12, \ldots
\end{gathered}
$$

Define the following sequence of numbers recursively.

$$
\begin{gathered}
-9,-6,-3,0,3,6,9,12,15 \\
b_{1}=-9 \quad b_{n}=b_{n-1}+3 \quad \text { For } 1<\mathrm{n} \leq 9
\end{gathered}
$$

Explicitly defined:

$$
b_{n}=\{3(n-1)-9: \text { for } \mathrm{n}=1,2,3, \ldots, 9\}
$$

$$
\left\{a_{k}\right\}=\{1,3,5,7,9\} \quad \sum_{k=1}^{5} a_{k}=1+3+5+7+9
$$

If we add together all the terms of the sequence we get something called a series.

$$
\sum_{k=1}^{5} a_{k}=26
$$

Summation Notation uses Greek letter (capital) sigma

Carl Friedrich Gauss (1777-1855)

As a young student (7-10 years old) his class was asked to add the first 100 numbers,
$1+2+3+\ldots+98+99+100=$?
You have one minute \rightarrow what's the answer?
Karl immediately gave the answer: 5050.
How did he do it so fast?

$$
\begin{gathered}
\left.\begin{array}{c}
1 \\
100
\end{array}\right)+\left(\begin{array}{r}
2 \\
99
\end{array}++\begin{array}{c}
3 \\
98
\end{array}+\ldots+\binom{48}{53}+\left(\begin{array}{c}
49 \\
52
\end{array}++\begin{array}{l}
50 \\
51 \\
101 \\
101 \\
101 \\
101
\end{array}\right.\right. \\
=50(101)=5050
\end{gathered}
$$

Triangular Numbers

Why are they called "triangular numbers"?
1 O

$$
\begin{aligned}
& 1+2=3 \\
& 1+2+3=6
\end{aligned}
$$

How can we calculate the $100^{\text {th }}$ triangular number?

Triangular Numbers $T_{N}=\frac{N(N+1)}{2} \quad T_{100}=\frac{100(100+1)}{2}=5050$

This is Gauss's number!

The sum of the first ' n ' integers is a triangular number.

$$
\sum_{k=1}^{n} k=\frac{n(n+1)}{2}
$$

$\sum^{n} \quad$ (Where ' c ' is a constant)

n
$\sum_{k=1}^{n} c=c n$

The sum of the first ' n ' "perfect square integers"

n

$$
k^{2}=1^{2}+2^{2}+3^{2}+\cdots+n^{2}=1+4+9+\cdots+n^{2}
$$

$$
=\frac{n(n+1)(2 n+1)}{6}
$$

The sum of the first ' n ' "perfect square integers"
$\sum_{k=1}^{n}$

$$
k^{3}=1^{3}+2^{3}+3^{3}+\cdots+n^{3}=1+8+27+\cdots+n^{3}
$$

$$
=\left(\frac{n(n+1)}{2}\right)^{2}
$$

Properties of Series

\#1 $\sum_{k=1}^{n}\left(c a_{k}\right)=c a_{1}+c a_{2}+\cdots+c a_{n}=c \sum_{k=1}^{n} a_{k}$

Using Properties of Series

$$
\begin{aligned}
& \sum_{k=1}^{6}(2 k)=2 \sum_{k=1}^{6} a_{k}=\frac{2(\mathrm{n})(\mathrm{n}+1)}{2}=\frac{2(6)(6+1)}{2} \\
& \sum_{k=1}^{7}\left(k^{2}+3 k+2\right) \sqrt{\# 2}=\sum_{k=1}^{7} k^{2}+\sum_{k=1}^{7} 3 k+2 \\
& \# 1=\sum_{k=1}^{7} k^{2}+3 \sum_{k=1}^{7} k+2 \\
& =\frac{n(n+1)(2 n+1)}{6}+\frac{3(n)(n+1)}{2}+2 \mathrm{n} \\
& =\frac{7(7+1)[2(7)+1]}{6}+\frac{3(7)(7+1)}{2}+2(7)=5138
\end{aligned}
$$

Using Properties of Series

$$
\sum_{k=4}^{10}\left(2 k^{3}\right)_{\# 1}^{\#}=2 \sum_{k=4}^{10} k^{3} \quad=2\left(\sum_{k=1}^{10} k^{3}-\sum_{k=1}^{3} k^{3}\right)
$$

$$
\begin{gathered}
=2\left(\frac{10(10+1)}{2}\right)^{2}-2\left(\frac{3(3+1)}{2}\right)^{2} \\
=2(55)^{2}-2(6)^{2}=5978
\end{gathered}
$$

