Math-1050

Session \#33

Systems of NON -Linear Equations

Solution to an Equation in two variables: an ordered pair that makes the equation a true statement.

Solution to a system two equations in two variables: an ordered pair of real numbers that is a solution of both equation. (Where the graphs intersect.)

List the methods of solving systems of linear equations.

1. Graphing
2. Substitution
3. Elimination
4. Cramer's Rule (uses determinants)
5. Row Operations (Gaussian Elimination)
6. Matrix Equation (uses inverse matrices)

Which can be used to solve systems of non-linear equations.
There is no general methodology

1. A parabola and a line

0 solutions

1 solution

2 solutions

Solve the System
 $$
y=2 x^{2} \quad y=3 x+2
$$

Substitution: $y=y$

$$
\begin{aligned}
& 2 x^{2}=3 x+2 \\
& 2 x^{2}-3 x-2=0 \\
& 2 x^{2}-4 x+x-2=0
\end{aligned}
$$

$$
-4=-4 * 1
$$

$$
-3 x=\underline{-4 x}+1 x
$$

These are all of the terms in "the box"

	x	-2
$2 x$	$2 x^{2}$	$-4 x$
1	x	-2

$$
\begin{aligned}
& \begin{array}{l}
\text { rms in "the box" } \\
0=(2 x+1)(x-2) \\
x=2
\end{array} \\
& \begin{array}{cc}
x=-\frac{1}{2} \\
f\left(-\frac{1}{2}\right)=3\left(-\frac{1}{2}\right)+2 & \left(-\frac{1}{2}, \frac{1}{2}\right) \\
f(2)=2(2)^{2} & (2,8)
\end{array}
\end{aligned}
$$

0 solutions

2. Two Parabolas

1 solution

2 solutions

Same Parabola: all points on the parabola are solutions (Infinitely many solutions)

Solve the system of equations. $\quad y=x^{2}-2 x-8$
Substitution: $y=y \quad y=-x^{2}+4 x-8$
$-x^{2}+4 x-8=x^{2}-2 x-8$
$+x^{2}-4 x+8+x^{2}-4 x+8$
\rightarrow Non-standard
quadratic equation

$$
\begin{array}{ccc}
0=2 x^{2}-6 x & f(0)=-8 & (0,-8) \\
0=2 x^{2}-6 x & & \\
\div 2 \div 2 \div 2 & f(3)=(3)^{2}-2(3)-8 \\
0 & =x^{2}-3 x & f(3)=-5 \\
0=x(x-3) & & \\
x=0 & x=3 &
\end{array}
$$

A circle and a line

Finding the equation of a circle:
What is the radius of the circle?

$$
\begin{gathered}
a^{2}+b^{2}=c^{2} \\
3^{2}+4^{2}=r^{2} \\
9+16=r^{2} \\
25=r^{2} \\
r=5
\end{gathered}
$$

Now I will pick a random point on the circle.
What is the equation for the radius of the circle when the point is (x, y) ?

$$
x^{2}+y^{2}=r^{2}
$$

This is the general equation for a circle centered at (0,0)!!!

This is the equation of a circle centered at the origin whose radius is 5 .

$$
x^{2}+y^{2}=r^{2}
$$

Equations of Circles

 of the circle.
(h, k) is the center of the circle.
$9=(x-3)^{2}+(y+4)^{2} \quad ' r \prime=? \quad(h, k)=?$

$$
r=3 \quad \text { center is }(3,-4)
$$

$$
3=(x+2)^{2}+(y-1)^{2} \quad \text { 'r' }=? \quad(\mathrm{~h}, \mathrm{k})=?
$$

$$
r=\sqrt{3} \quad \text { center is }(-2,1)
$$

Substitution: $y^{2}=y^{2}$

$$
y^{2}=4-x^{2}
$$

$$
y^{2}=(x+3)^{2}
$$

$$
4-x^{2}=x^{2}+6 x+9 \quad 4-x^{2}=(x+3)^{2}
$$

\rightarrow Nonstandard quadratic equation

$$
0=2 x^{2}+6 x+5
$$

$$
x=\frac{-b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}
$$

$$
x=\frac{-(\mathrm{l})}{2(\mathrm{)}} \pm \frac{\sqrt{()^{2}-[4()(\mathrm{)}]}}{2()}
$$

$$
x=-3 / 2 \pm \frac{\sqrt{36-40}}{2}
$$

\rightarrow Imaginary
zeroes \rightarrow no solution

Substitution: $x^{2}=x^{2} \quad \underline{\text { A Parabola and a Circle }}$

$$
\begin{array}{ll}
x^{2}=10-y^{2} & 10=x^{2}+y^{2} \quad y=x^{2}-7 \\
x^{2}=y+7 & \rightarrow \text { Non-standard quadratic equation }
\end{array}
$$

$\begin{aligned} & 10-y^{2}=y+7 \\ & y^{2}+y-3=0\end{aligned} \quad y=\frac{-(1)}{2(1)} \pm \frac{\sqrt{(1)^{2}-[4(1)(-3)]}}{2(1)}$

$$
y=\frac{-b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}
$$

$y=\frac{-(~)}{2(~)} \pm \frac{\sqrt{()^{2}-[4(~)(~)]}}{2()}$

$$
\begin{gathered}
y=-\frac{1}{2} \pm \frac{\sqrt{1+12}}{2} \\
y=-\frac{1}{2} \pm \frac{\sqrt{13}}{2}
\end{gathered}
$$

\rightarrow Now we need to find ' x ' values

A Parabola and a Circle

$$
\begin{gathered}
10=x^{2}+y^{2} \\
y=x^{2}-7
\end{gathered}
$$

$$
-\frac{1}{2}+\frac{\sqrt{13}}{2}=x^{2}-7
$$

Substitution: $\mathrm{y}=\mathrm{y}$

$$
y=-\frac{1}{2} \pm \frac{\sqrt{13}}{2}
$$

$$
x^{2}=7-\frac{1}{2}-\frac{\sqrt{13}}{2}
$$

$$
\begin{aligned}
& x^{2}=7-\frac{1}{2}+\frac{\sqrt{13}}{2} \\
& x^{2}=\frac{13}{2}+\frac{\sqrt{13}}{2}
\end{aligned}
$$

$$
x^{2}=\frac{13}{2}-\frac{\sqrt{13}}{2}
$$

$$
x= \pm \sqrt{\frac{13}{2}+\frac{\sqrt{13}}{2}}
$$

$$
x= \pm \sqrt{\frac{13}{2}-\frac{\sqrt{13}}{2}}
$$

A Parabola and a Circle $\quad 10=x^{2}+y^{2} \quad y=x^{2}-7$

A hyperbola and a parabola

4 solutions

Substitution: $x^{2}=x^{2} \quad \underline{\text { Hyperbola and Parabola }}$

$$
\begin{aligned}
& x^{2}=y^{2}+4 \\
& x^{2}=y+4
\end{aligned}
$$

$y^{2}+4=y+4 \rightarrow$ Non-standard quadratic equation

$$
y^{2}-y=0
$$

$$
y(y-1)=0
$$

$$
y=0,1
$$

\rightarrow Now we need to find ' x ' values
$y=x^{2}-4$
$0=x^{2}-4$
$x=2,-2$
$y=x^{2}-4$
$1=x^{2}-4$
$x=\sqrt{5},-\sqrt{5}$

A Hyperbola and a Parabola

$$
\begin{array}{cc}
4=x^{2}-y^{2} & x=2,-2 \\
y=x^{2}-4 & x=\sqrt{5},-\sqrt{5} \\
y=\sqrt{5}^{2}-4 & y=(-\sqrt{5})^{2}-4 \\
y=1 & y=1 \\
(\sqrt{5}, 1) & (-\sqrt{5}, 1) \\
y=(2)^{2}-4 & y=(-2)^{2}-4 \\
y=0 & y=0 \\
(2,0) & (-2,0)
\end{array}
$$

