Math-1050 Session #33 Systems of <u>NON</u>-Linear Equations

Solution to an Equation in two variables: an ordered pair that makes the equation a true statement.

Solution to a system two equations in two variables: an ordered pair of real numbers that is a solution of both equation. (Where the graphs intersect.)

List the methods of solving systems of linear equations.

- 4. Cramer's Rule (uses determinants)
- 5. Row Operations (Gaussian Elimination)
- 6. Matrix Equation (uses inverse matrices)

Which can be used to solve systems of *non-linear* equations.

There is no *general methodology*

1. A parabola and a line

Solve the System

$$y = 2x^2 \qquad y = 3x + 2$$

(2, 8)

Substitution:
$$y = y$$

 $2x^{2} = 3x + 2$
 $2x^{2} - 3x - 2 = 0$
 $2x^{2} - 4x + x - 2 = 0$
 $-4 = -4 * 1$
 $-4 = -4 * 1$
 $-3x = -4x + 1x$

These are all of the terms in "the box"

 $f(2) = 2(2)^2$

2. Two Parabolas

<u>Same Parabola</u>: all points on the parabola are solutions (Infinitely many solutions)

Solve the system of equations.

 $-x^{2} + 4x - 8 = x^{2} - 2x - 8$

 $+x^2$ -4x +8 $+x^2$ -4x +8

Substitution: y = y

$$y = x^2 - 2x - 8$$
$$y = -x^2 + 4x - 8$$

→ Non-standard quadratic equation

(0, -8)

(3, -5)

$$0 = 2x^{2} - 6x$$

$$f(0) = -8$$

$$(0, -8)$$

$$f(0) = -8$$

$$(0, -8)$$

$$f(3) = (3)^{2} - 2(3) - 8$$

$$f(3) = (3)^{2} - 2(3) - 8$$

$$f(3) = -5$$

$$f(3) = -5$$

$$(3, -5)$$

$$f(3) = -5$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$f(3) = -5$$

$$(3, -5)$$

$$(3, -5)$$

$$f(3) = -5$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

$$(3, -5)$$

A circle and a line

Finding the equation of a circle:

What is the radius of the circle?

Now I will pick a random point on the circle.

This is the <u>equation</u> of a circle <u>centered</u> <u>at the origin</u> whose <u>radius is 5</u>.

Equations of Circles

$$r^{2} = (x - h)^{2} + (y - k)^{2}$$
'r' is the radius
of the circle.
(h, k) is the center
of the circle.

$$9 = (x-3)^{2} + (y+4)^{2}$$
 'r' = ? (h, k) = ?
r = 3 center is (3, -4)

$$3 = (x+2)^{2} + (y-1)^{2}$$
 'r' = ? (h, k) = ?
r = \sqrt{3} center is (-2, 1)

Substitution: $x^2 = x$	² <u>A Parabola and a Circle</u>
$x^2 = 10 - y^2$	$10 = x^2 + y^2 y = x^2 - 7$
$x^2 = y + 7$	\rightarrow Non-standard quadratic equation
$10 - y^2 = y + 7$	$v = \frac{-(1)}{1} + \frac{\sqrt{(1)^2 - [4(1)(-3)]}}{1}$
$v^2 + v - 3 = 0$	y = 2(1) + 2(1)
$y = \frac{-b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a}$	$y = -\frac{1}{2} \pm \frac{\sqrt{1+12}}{2}$ $1 = \sqrt{13}$
$y = \frac{-()}{2()} \pm \frac{\sqrt{()^2 - [2]}}{2()}$	$\frac{1}{(1)(1)} \qquad y = -\frac{1}{2} \pm \frac{\sqrt{15}}{2}$

 \rightarrow Now we need to find 'x' values

<u>A Parabola and a Circle</u> \rightarrow Now we need to find 'x' values

$$10 = x^{2} + y^{2} \qquad -\frac{1}{2} + \frac{\sqrt{13}}{2} = x^{2} - 7$$

Substitution: $y = y$
 $y = -\frac{1}{2} \pm \frac{\sqrt{13}}{2} \qquad x^{2} = 7 - \frac{1}{2} + \frac{\sqrt{13}}{2}$
 $x^{2} = 7 - \frac{1}{2} - \frac{\sqrt{13}}{2} \qquad x^{2} = \frac{13}{2} + \frac{\sqrt{13}}{2}$
 $x^{2} = \frac{13}{2} - \frac{\sqrt{13}}{2} \qquad x^{2} = \frac{13}{2} + \frac{\sqrt{13}}{2}$
 $x = \pm \sqrt{\frac{13}{2} - \frac{\sqrt{13}}{2}}$
 $x = \pm \sqrt{\frac{13}{2} - \frac{\sqrt{13}}{2}}$

<u>A Parabola and a Circle</u> $10 = x^2 + y^2$ $y = x^2 - 7$

Substitution: x^2	$= x^2$ Hyperb	ola and Parabola
$x^2 = y^2 + 4$	$4 = x^2 - 2$	$y^2 \qquad y = x^2 - 4$
$x^2 = y + 4$		
$y^2 + 4 = y + 4$	\rightarrow Non-standard	quadratic equation
$y^2 - y = 0$		
y(y-1)=0		
<i>y</i> = 0, 1	\rightarrow Now we need t	o find 'x' values
$y = x^2 - 4$	$0 = x^2 - 4$	x = 2, -2
$y = x^2 - 4$	$1 = x^2 - 4$	$x = \sqrt{5}, -\sqrt{5}$

A Hyperbola and a Parabola

$$4 = x^{2} - y^{2} \qquad x = 2, -2$$

$$y = x^{2} - 4 \qquad x = \sqrt{5}, -\sqrt{5}$$

- $y = \sqrt{5}^{2} 4$ $y = (-\sqrt{5})^{2} 4$ y = 1 y = 1
 - **(**√5, 1)
- $y = (2)^2 4$ y = 0(2, 0)
- $= (-\sqrt{5})^2 4$ y = 1 $(-\sqrt{5}, 1)$ $y = (-2)^2 - 4$ y = 0
 - **(**-2, **0)**