Math-1050

Session \#31
12.4 (Matrix Algebra)

Matrix: A rectangular arrangement of numbers in rows and columns.

Dimension (order): Of a matrix with
3 rows and 2 columns is: 3×2
In general we say: $\mathrm{m} \times \mathrm{n}$ where:
" m " = \# of rows
" \underline{n} " $=$ \# of Columns

\[

\]

Each element, or entry, $a_{i j}$, of the matrix uses double subscript notation.

Row subscript: is the 1st letter (i)
Column Subscript: is the 2nd letter (j)

Example: Element aij is in the th row and th column.
$\left[a_{i j}\right] \quad \begin{aligned} & \text { Is "shorthand" for a matrix with 'i' rows and } \\ & \text { 'j' columns. (i' } \times \text { ' }{ }^{\prime} \text { ') }\end{aligned}$

Elements: numbers in the matrix

What is the
"order" of this matrix ?

$$
\left(\begin{array}{cc}
\frac{5}{1,1} & \frac{-2}{1,2} \\
\frac{3}{2,1} & \frac{1}{2,2}
\end{array}\right)
$$

Equal matrices: have same "order" and each corresponding element is equal.

1. What number is $a_{2,1} \quad 3$
2. What number is $a_{1,2}-2$

Matrices can be HUGE !

Dimension: m rows x n columns
4×5

Scalar: A real number (a constant) that is multiplied by every element in the matrix.

Scalar Multiplication: The process of multiplying every element in the matrix by a scalar (constant).

Let: ' A ' represent the matrix

$$
\left[a_{i j}\right]
$$

Then: $3 \mathrm{~A}=3\left[a_{i j}\right]$

Multiplying by a constant (also called a "Scalar Multiplication")

$$
\begin{aligned}
5\left(\begin{array}{rr}
3 & 4 \\
9 & 1 \\
7 & -2
\end{array}\right) & =\left(\begin{array}{rr}
5(3) & 5(4) \\
5(9) & 5(1) \\
5(7) & 5(-2)
\end{array}\right) \\
& =\left(\begin{array}{rr}
15 & 20 \\
45 & 5 \\
35 & -10
\end{array}\right)
\end{aligned}
$$

Basic Operations: Addition

Add the matrices

$$
\left(\begin{array}{rr}
2 & -3 \\
7 & 2
\end{array}\right)+\left(\begin{array}{rr}
3 & 1 \\
-3 & 5
\end{array}\right)=\left(\begin{array}{ll}
\frac{5}{4} & \frac{-2}{7} \\
-
\end{array}\right)
$$

Basic Operations: Addition

$$
\begin{gathered}
\left(\begin{array}{rr}
2 & -3 \\
7 & 2
\end{array}\right)+\left(\begin{array}{ccc}
3 & 1 & 7 \\
-3 & 5 & 6
\end{array}\right)=? \\
\text { CAN'T DO THIS!!!!!!! }
\end{gathered}
$$

(must be the same order for addition/subtraction)

Matrix Multiplication

Finding the Order of the "Product" of Two Matrices (2 matrices multiplied by each other):

Matrix $A \times$ Matrix $B=A B$

$m \times n$ (times) $n x p=m \times p$

What is the dimension of the product?

$$
\begin{aligned}
& \left(\begin{array}{rr}
2 & -3 \\
7 & 2
\end{array}\right) \times\left(\begin{array}{ccc}
3 & 1 & 5 \\
-3 & 5 & 4
\end{array}\right)=? \\
& 2 \times 2 \times 2 \times 3
\end{aligned}
$$

What is the dimension of the product?

$$
\begin{aligned}
& A \quad \mathrm{x} B=\text { ? } \\
& \left(\begin{array}{rr}
2 & -3 \\
7 & 2
\end{array}\right) \times\left(\begin{array}{cc}
3 & 1 \\
-3 & 5
\end{array}\right)=\text { ? } \\
& 2 \times 2 \quad 2 \times 2=2 \times 2
\end{aligned}
$$

What is the dimension of the product?

$$
\begin{aligned}
& \left(\begin{array}{rr}
2 & -3 \\
7 & 2
\end{array}\right) \times\left(\begin{array}{cc}
3 & 1 \\
-3 & 5 \\
4 & 6
\end{array}\right)=? \\
& 2 \times 2 \times 3 \times 2
\end{aligned}
$$

So, how do you multiply matrices?

$$
\left(\begin{array}{ll}
1 & 3 \\
4 & 2
\end{array}\right) \times\left(\begin{array}{ll}
2 & -1 \\
1 & -2
\end{array}\right)=\left(\begin{array}{ll}
\frac{1,1}{1,2} & \frac{1}{2,1}
\end{array}\right)
$$

1. Can you multiply?
2. What is order of the answer matrix?

The "address" of the answer explains what elements are multiplied.

So, how do you multiply matrices?

So, how do you multiply matrices?

So, how do you multiply matrices?

$\left(\begin{array}{ll}1 & 3 \\ 4 & 2\end{array}\right) \times\left(\begin{array}{l}2 \\ 1\end{array}\binom{-1}{-2}=\left(\begin{array}{l}\frac{5}{1,1} \frac{-7}{10}\left(\frac{1,2}{2,1} \frac{4^{\star}-1^{\star}+2^{\star}-2}{2,2}\right.\end{array}\right)\right.$

Your turn:

 5. Write the product of the two matrices.$$
\begin{aligned}
& \left(\begin{array}{cc}
2 & -3 \\
7 & 2
\end{array}\right) \times\left(\begin{array}{ccc}
3 & 1 & 5 \\
-3 & 5 & 4
\end{array}\right)=? \\
& 2 \times 2 \quad 2 \times 3 \\
& \text { 2 } \quad=2 \times \\
& \text { equal }-2
\end{aligned}
$$

Is Matrix Multiplication commutative?

$$
\begin{aligned}
& A \text { * } B=A B \\
& \left(\begin{array}{ll}
1 & 3 \\
4 & 2
\end{array}\right) \times\left(\begin{array}{ll}
2 & -1 \\
1 & -2
\end{array}\right)=\left(\begin{array}{ll}
5 & -7 \\
10 & -8
\end{array}\right) \\
& \left(\begin{array}{cc}
2 & -1
\end{array}\right)\left(\begin{array}{ll}
1 & 3
\end{array}\right) \quad \text { 7. Write the product of the } \\
& =\text { ? two matrices. } \\
& \text { 8. Does } \mathrm{AB}=\mathrm{BA} \text { ? } \\
& =A B
\end{aligned}
$$

Matrix Equation

Matrix of variables

$$
\begin{aligned}
& 2 x-3 y=8 \\
& 7 x+2 y=2
\end{aligned}
$$

System of equations

Matrix equation

Generalized version of a matrix equation:

Inverse Property of Multiplication

Any number multiplied by its inverse (reciprocal) equals ' 1 '.

$$
3 * \frac{1}{3}=1 \quad 3 * 3^{-1}=1
$$

Any number multiplied by its inverse equals ' 1 '.
Square matrices can have inverses too.
What happens if you multiply a matrix by its inverse?

You get the "identity" matrix (1's down the diagonal and zeroes everywhere else.

Inverse Matrices

Any square matrix multiplied by its inverse equals the identity matrix.

$$
A A^{-1}=I_{n}
$$

Solving a System of equation using Inverse Matrices:

Matrix equation
Multiply (left/right) by the inverse matrix A.

$$
\begin{gathered}
\mathrm{AX}=\mathrm{B} \\
A^{-1} A X=A^{-1} B \\
\quad X=A^{-1} B
\end{gathered}
$$

The Identity Matrix

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Is a "square" matrix, with 1's down the "main diagonal and 0 's everywhere else.

Finding An Inverse Matrix

$A=\left(\begin{array}{cc}1 & 3 \\ 4 & 13\end{array}\right) \rightarrow\left(\begin{array}{cc|cc}1 & 3 & 1 & 0 \\ 4 & 13 & 0 & 1\end{array}\right) \begin{aligned} & \text { 1) Write the matrix and, to its } \\ & \text { right, write the identity matrix. }\end{aligned}$
2) We need a 1 in the upper left position. It's already there.
3) Perform row operations on the left side matrix until you get zeroes below the main diagonal.

$$
R_{2}=R_{2}-4 R_{1}
$$

$$
\left(\begin{array}{rr|rr}
1 & 3 & 1 & 0 \\
0 & 1 & -4 & 1
\end{array}\right)
$$

4) Perform row operations on the left side matrix until you get zeroes above the main diagonal.

$$
R_{1}=R_{1}-3 R_{2} \quad\left(\begin{array}{ll|ll}
1 & 0 & 13 & -3 \\
0 & 1 & -4 & 1
\end{array}\right) \quad A^{-1}=\left[\begin{array}{cc}
13 & -3 \\
-4 & 1
\end{array}\right]
$$

Finding An Inverse Matrix
$A=\left(\begin{array}{cc}1 & 3 \\ 4 & 13\end{array}\right) \rightarrow\left(\begin{array}{cc|cc}1 & 3 & 1 & 0 \\ 4 & 13 & 0 & 1\end{array}\right) \begin{aligned} & \text { 1) Write the matrix and, to its } \\ & \text { right, write the identity matrix. }\end{aligned}$
2) Perform row operations on the left side matrix until you get zeroes below the main diagonal.

$$
R_{2}=R_{2}-4 R_{1} \quad\left(\begin{array}{ll|rr}
1 & 3 & 1 & 0 \\
0 & 1 & -4 & 1
\end{array}\right)
$$

3) Perform row operations on the left side matrix until you get zeroes above the main diagonal.

$$
R_{1}=R_{1}-3 R_{2} \quad\left(\begin{array}{cc|cc}
1 & 0 & 13 & -3 \\
0 & 1 & -4 & 1
\end{array}\right) \quad A^{-1}=\left[\begin{array}{cc}
13 & -3 \\
-4 & 1
\end{array}\right]
$$

Using Inverse Matrices to Solve Linear Systems

$$
\begin{aligned}
& 2 x-7 y=-21 \\
& -x+4 y=12
\end{aligned}
$$

Step 1: Convert to a matrix equation

$$
\begin{aligned}
A X & = \\
\left(\begin{array}{rr}
2 & -7 \\
-1 & 4
\end{array}\right)\left(\begin{array}{l}
x \\
y
\end{array}\right] & \equiv\binom{-21}{12}
\end{aligned}
$$

$$
\begin{gathered}
A X=B \\
\left(\begin{array}{cc}
2 & -7 \\
-1 & 4
\end{array}\right)\left[\begin{array}{l}
x \\
y
\end{array}\right]=\binom{-21}{12} \\
A^{-1} A \quad X=A^{-1} B \\
X=A^{-1} B
\end{gathered}
$$

Step 2: We need to find A^{-1}

$$
\begin{gathered}
A X=B \\
\left(\begin{array}{cc}
2 & -7 \\
-1 & 4
\end{array}\right)\left[\begin{array}{l}
x \\
y
\end{array}\right]=\binom{-21}{12} \\
A^{-1} A \quad X=A^{-1} B \\
X=A^{-1} B
\end{gathered}
$$

Step 2: We need to find A^{-1}

Step 3: Find the Inverse Matrix

$A=\left(\begin{array}{cc}2 & -7 \\ -1 & 4\end{array}\right) \rightarrow\left(\begin{array}{cc|cc}2 & -7 & 1 & 0 \\ -1 & 4 & 0 & 1\end{array}\right)$

1) Write the matrix and, to its right, write the identity matrix.
2) We need a ' 1 ' in the upper left position.

$$
\begin{aligned}
& R_{1} \rightarrow R_{2} \\
& R_{2} \rightarrow R_{1}
\end{aligned} \quad\left(\begin{array}{cc|cc}
-1 & 4 & 0 & 1 \\
2 & -7 & 1 & 0
\end{array}\right) R_{1} \rightarrow-R_{1}\left(\begin{array}{cc|cc}
1 & -4 & 0 & -1 \\
2 & -7 & 1 & 0
\end{array}\right)
$$

3) Perform row operations on the left side matrix until you get zeroes below and then above the main diagonal.

$$
R_{2}=R_{2}-2 R_{1} \quad R_{1}=R_{1}+4 R_{2}
$$

$$
\begin{aligned}
& R_{2}=R_{2}-2 R_{1} \\
& \left(\begin{array}{cc|cc}
1 & -4 & 0 & -1 \\
0 & 1 & 1 & 2
\end{array}\right) \quad R_{1}=R_{1}+4 R_{2} \\
& \left(\begin{array}{ll|ll}
1 & 0 & 4 & 7 \\
0 & 1 & 1 & 2
\end{array}\right)
\end{aligned} \quad A^{-1}=\left[\begin{array}{cc}
13 & -3 \\
-4 & 1
\end{array}\right]
$$

Step 4: matrix multiplication

$A^{-1} A \quad X=A^{-1} B$
$\left(\begin{array}{ll}4 & 7 \\ 1 & 2\end{array}\right)\left[\begin{array}{cc}2 & -7 \\ -1 & 4\end{array}\right)\left(\begin{array}{l}\mathrm{x} \\ \mathrm{y}\end{array}\right]=\left[\begin{array}{ll}4 & 7 \\ 1 & 2\end{array}\right)\binom{-21}{12}$
$\left(\begin{array}{ll}(4)(2)+(7)(-1) & (4)(-7)+((7)(4) \\ (1)(2)+(2)(-1) & (1)(2)+(2)(-1)\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

$$
\begin{gathered}
A^{-1} A \quad X=A^{-1} B \\
{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left(\begin{array}{ll}
4 & 7 \\
1 & 2
\end{array}\right)\binom{-21}{12}} \\
{\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
(4)(-21)+(7)(12) \\
(1)(-21)+(2)(12)
\end{array}\right)=\left[\begin{array}{l}
0 \\
3
\end{array}\right]}
\end{gathered}
$$

$$
\begin{aligned}
1 X & = \\
\binom{x}{y} & =\left(\begin{array}{ll}
4 & 7 \\
1 & 2
\end{array}\right)\binom{-21}{12}
\end{aligned}
$$

Your turn: multiply the right side.

$$
\binom{x}{y}=\binom{0}{3}
$$

