Math-1050 Session 2 (Algebra Review \#2)

-Synthetic Division
-finding quotients and remainders
-verifying if an expression is a factor of a polynomial
-Reducing Rational expressions to their lowest form (simply)
-Add/subtract Rational Expressions
-equal denominators
-denominators that are additive inverses of each other
-unequal denominators
-Simplify Complex Rational Expressions

- "n-th" roots (radicals)
- Converting between radical and rational exponent forms
\rightarrow WOW!!

Synthetic Division: A simpler way to divide some polynomials. You can use synthetic division when dividing by (when the dividend is) a linear divisor with a lead coefficient of ' 1 ':

Linear Factor/divisor: an expression of the form: $(\mathrm{ax}+\mathrm{b})$ (remember: $y=m x+b$??) where ' a ' and ' b ' are integers.
$1^{\text {st }}$ step: Write the polynomial with only its coefficients.
$2^{\text {nd }}$ step: Write the "zero" of the linear factor.
3rd step: add down

Is there an easier way to do this? Yes!

$$
x - 1 \longdiv { x ^ { 3 } - 4 x ^ { 2 } - 1 5 x + 1 8 }
$$

$4^{\text {th }}$ step: Multiply the "zero" by the lead coefficient.
5th step: Write the product under the next term to the right. $6^{\text {th }}$ step: add the second column downward

Is there an easier way to do this? Yes!

$$
x - 1 \longdiv { x ^ { 3 } - 4 x ^ { 2 } - 1 5 x + 1 8 }
$$

$7^{\text {th }}$ step: Multiply the "zero" by the second number 8th step: Write the product under the next term to the right. $9^{\text {th }}$ step: add the next column downward

Is there an easier way to do this? Yes!

$$
\begin{gathered}
x - 1 \longdiv { x ^ { 3 } - 4 x ^ { 2 } - 1 5 x + 1 8 } \\
\left.\hline 1 \begin{array}{|cccc}
1 & -4 & -15 & 18 \\
\hline 1 & -3 & -18 & -3 \\
\hline
\end{array}\right)
\end{gathered}
$$

$10^{\text {th }}$ step: Multiply the "zero" by the 3rd number
11th step: Write the product under the next term to the right
$12^{\text {th }}$ step: add the next column downward

$$
\begin{aligned}
& x^{2}-3 x-18 \\
& x - 1 \longdiv { x ^ { 3 } - 4 x ^ { 2 } - 1 5 x + 1 8 } \\
& 1 \longdiv { 1 } \begin{array} { l l l l }
{ } & { - 4 } & { - 1 5 } & { 1 8 }
\end{array} \\
& \begin{array}{lll}
1 & -3 & -18
\end{array} \\
& \begin{array}{lll}
1 & -3 & -18 \\
0 & 0
\end{array} \\
& x^{3}-4 x^{2}-15 x+18 \div(x-1)==x^{2}-3 x-18 \\
& \text { Because the remainder }=0 \text {, then }(x-1) \text { is a factor AND } \\
& x=1 \text { is a zero of the original polynomial! }
\end{aligned}
$$

An expression is a factor of another expression if and only if it divides evenly (has a remainder of zero).

$$
\begin{aligned}
& \text { Is }(x+3) \text { a factor of } f(x) ? \\
& f(x)=3 x^{3}-x^{2}-20 x+30 \\
& - 3 \longdiv { 3 } \begin{array} { r r r r }
{ 3 } & { - 1 } & { - 2 0 } & { 3 0 } \\
{ } & { - 9 } & { 3 0 } & { - 3 0 } \\
{ \hline 3 } & { - 1 0 } & { 1 0 } & { 0 }
\end{array}
\end{aligned}
$$

Because the remainder $=0$, then $(x+3)$ is a factor AND $x=-3$ is a zero of the original polynomial!

Reducing Rational Expressions to their "lowest form" (simplification)
$x+7($ Cannot use the Inverse Property of Multiplication on addends.

Addition and Subtraction mean:

Combine the terms into one term (if you can)
If you can't combine them (unlike terms) they still are connected to each other with addition.

Put terms being added/subtracted into parentheses before you try to simplify.

$$
\frac{x+7}{7(x+9)} \rightarrow \frac{(x+7)}{7(x+9)}
$$

$$
\frac{2 x-4}{4 x+6} \rightarrow \frac{2 x-4}{4 x+6} \rightarrow \frac{2(x-2)}{2(x+3)}
$$

You must FACTOR the fraction.

$$
\frac{32}{44} \rightarrow \frac{4 * 8}{4 * 11} \quad \frac{x^{2}-4}{x^{2}-3 x+2} \rightarrow \frac{(x-2)(x+2)}{(x-2)(x-1)}
$$

Break it apart into the product of fractions.

$$
\rightarrow \frac{4}{4} * \frac{8}{11}
$$

$$
\rightarrow \frac{(x-2)}{(x-2)} * \frac{(x+2)}{(x-1)}
$$

Notice the fraction that equals ' 1 '?

$$
\rightarrow 1 * \frac{8}{11} \rightarrow \frac{8}{11} \quad \rightarrow 1 * \frac{(x+2)}{(x-1)} \rightarrow \frac{(x+2)}{(x-1)}
$$

Multiplying Rational Expressions

Simplify before you multiply.

$$
\begin{aligned}
& \frac{(x-1)}{2(x+3)} * \frac{x^{2}-9}{(x+1)} \rightarrow \frac{(x-1)}{2(x+3)} * \frac{(x+3)(x-3)}{(x+1)} \\
& \rightarrow \frac{(x+3)}{(x+3)} * \frac{(x-1)(x-3)}{2(x+1)} \rightarrow \frac{(x-1)(x-3)}{2(x+1)}
\end{aligned}
$$

DON'T multiply the simplified version of the product, just leave it in factored form.

$$
\begin{aligned}
& 5 \div 5=1 \\
& 5 * \frac{1}{5}=1
\end{aligned}
$$

Inverse Property of Multiplication

Division by a number

 is the same as multiplication by its reciprocal.
Divide Rational Expressions

$$
\frac{x^{2}+2 x-35}{x^{2}-4 x-12} \div \frac{x^{2}-2 x-15}{x^{2}+9 x+14}
$$

$$
\rightarrow \frac{x^{2}+2 x-35}{x^{2}-4 x-12} * \frac{x^{2}+9 x+14}{x^{2}-2 x-15} \text { Simplify before you multiply. }
$$

$$
\rightarrow \frac{(x+7)(x-5)}{(x-6)(x+2)} * \frac{(x+2)(x+7)}{(x-5)(x+3)}
$$

$$
\rightarrow \frac{(x+7)(x+7)}{(x-6)(x+3)}
$$

Add/Subtract Rational Expressions with Equal Denominators Which one is correct?

$$
\underbrace{\frac{2 x-7}{x^{2}+2}-\frac{x-4}{x^{2}+2}} \rightarrow \frac{\frac{2 x-7-x-4}{x^{2}+2}}{\rightarrow \frac{2 x-7-x+4}{x^{2}+2}}
$$

Group expressions to avoid distributive property errors.

$$
\frac{(2 x-7)}{\left(x^{2}+2\right)}-\frac{(x-4)}{\left(x^{2}+2\right)} \rightarrow \frac{(2 x-7)-(x-4)}{x^{2}+2} \rightarrow \frac{2 x-7-x-(-4)}{x^{2}+2}
$$

$$
\rightarrow \frac{x-3}{x^{2}+2}
$$

Add/Subtract Rational Expressions whose Denominators are Additive Inverses of each other.

$\frac{1}{x-2}+\frac{3}{2-x} \quad$ Rewrite the denominator in "standard form"

$$
\begin{gathered}
\frac{1}{x-2}+\frac{3}{-x+2} \\
\frac{1}{x-2}+\frac{3}{(-x+2)} * \frac{(-1)}{(-1)} \quad \text { Use the Identity Property of Multiplication } \\
\text { (multiply by "one" in the form of }-1 /-1)
\end{gathered}
$$

Add/Subtract Rational Expressions with Unequal Denominators

Use the Identity Property of Multiplication ("multiply an individual rational term by "one in the form of...") to obtain equal denominators.

$$
\begin{aligned}
& \frac{3 x+1}{2 x}-\frac{1}{5} \\
\rightarrow & \frac{5}{5} * \frac{(3 x+1)}{2 x}-\frac{1}{5} * \frac{2 x}{2 x}
\end{aligned}
$$

$$
\rightarrow \frac{5(3 x+1)}{10 x}-\frac{2 x}{10 x}
$$

The textbook emphasizes obtaining the LCM (least common multiple) of the denominators rather than the

$$
\rightarrow \frac{5(3 x+1)-2 x}{10 x}
$$ "brute force" equal denominator.

Least Common Multiple Method
$\frac{12}{x^{2}+5 x-24}+\frac{3}{x-3} \quad$ Factor each denominator

$$
\begin{aligned}
& \frac{12}{(x+8)(x-3)}+\frac{3}{(x-3)} \quad \begin{array}{l}
\text { LCM of }(x+8)(x-3) \text { and }(x-3) ? \\
(x+8)(x-3)
\end{array} \\
& \frac{12}{(x+8)(x-3)}+\frac{3}{(x-3)} * \frac{x+8}{x+8} \quad \begin{array}{l}
\text { Use Identity Prop. Of Mult. } \\
\text { (Multiply by "1" in the form of... } \\
\frac{12}{(x+8)(x-3)}+\frac{3(x+8)}{(x+8)(x-3)} \text { Add } \frac{12+3(x+8)}{(x+8)(x-3)} \quad \text { Simplify }
\end{array}
\end{aligned}
$$

$$
\frac{3(x+12)}{(x+8)(x-3)}
$$

Simplify a Complex Rational Expression

Division: Division by a number is the same thing as... Multiplication by the reciprocal of the number.
$\rightarrow \frac{1}{2} \div \frac{5}{6}$
$\rightarrow \frac{1}{2} * \frac{6}{5} \quad$ Simplify before you multiply.
$\rightarrow \frac{1 * 2 * 3}{22 * 5}$

$$
\rightarrow \frac{3}{5}
$$

$$
\frac{\frac{2}{3}+\frac{x}{x+2}}{\frac{5 x+4}{x+3}}
$$

Combine Numerator into a single fraction

$$
\rightarrow\left(\frac{(x+2)}{(x+2)} * \frac{2}{3}+\frac{3}{3} * \frac{x}{(x+2)}\right) \div \frac{5 x+4}{x+3}
$$

$\rightarrow\left(\frac{2 x+4}{3(x+2)}+\frac{3 x}{3(x+2)}\right) \div \frac{5 x+4}{x+3}$
$\rightarrow \frac{(5 x+4)}{3(x+2)} \div \frac{(5 x+4)}{(x+3)}$
Notice the grouping
Convert to multiplication
$\rightarrow \frac{(5 x+4)}{3(x+2)} * \frac{(x+3)}{(5 x+4)} \quad$ Simplify $\rightarrow \frac{(x+3)}{3(x+2)}$

Properties of Radicals

Product of Radicals $\quad \sqrt[n]{a} * \sqrt[n]{b} \leftrightarrow \sqrt[n]{a b}$

$$
\begin{aligned}
& \begin{array}{r}
3 \sqrt{8} * 5 \sqrt{3} \\
\rightarrow 3 * 5 * 5 * \sqrt{8}) * \sqrt{3} \rightarrow 3 * 5 * \sqrt{4} * \sqrt{2} * \sqrt{3} \\
\rightarrow 3 * \sqrt{2} * \sqrt{3} \rightarrow 30 * \sqrt{6}) \rightarrow 30 \sqrt{6} \\
-2 \sqrt{56 x^{3} y} \rightarrow-2 * \sqrt{x^{2}} * \sqrt{8 * 7 x y} \\
\rightarrow-2 *|x| * \sqrt{4} * \sqrt{2 * 7 x y} \rightarrow \rightarrow-4|x| \sqrt{14 x y}
\end{array}
\end{aligned}
$$

We'll talk about this a little later.

Properties of Radicals

Background: Functions we learned in SM3

Squaring Function

$$
f(x)=x^{2}
$$

Square Root Function $g(x)=\sqrt{x}$

The square root of a number is always positive (called the "principal square root")

$$
3=\sqrt{x}
$$

Background: Functions we learned in SM3

The Cube Function $\quad f(x)=x^{3}$

Cubed Root function: $\mathrm{g}(x)=\sqrt[3]{x}$

The cubed root of a number can be either positive $\underline{O R}$ negative.

$$
\begin{aligned}
2 & =\sqrt[3]{8} \\
-2 & =\sqrt[3]{-8}
\end{aligned}
$$

Properties of Radicals

Even and Odd Index numbers

$$
\sqrt[n]{a^{n}}=|a| \quad \text { (if } \mathrm{n} \text { is even) }
$$

The even root of a number is always positive.

This is easy to see if the numbers are integers.

$$
\sqrt[4]{(-2)^{4}}=|-2|=2 \quad(-2)^{4}=16 \quad \sqrt[4]{16}=2
$$

But when we simplify radicals with variables in them, we must specify the result to be positive. $\sqrt[4]{x^{4}}=|x| \neq x$

Because ' x ' is not necessarily a positive number (and ' $-x$ ' is not necessarily a negative number).
$\sqrt[n]{a^{n}}=a \quad$ (if n is odd)
Since 'a' is either a positive or a negative number when it is listed as just a variable.

Properties of Radicals

Converting Radicals to Rational Exponents

$$
\begin{array}{cc}
a^{1 / n} \leftrightarrow * \sqrt[n]{a} & a^{m / n} \leftrightarrow * \sqrt[n]{a^{m}} \leftrightarrow(\sqrt[n]{a})^{m} \\
5(y)^{1 / 3} \rightarrow 5 \sqrt[3]{y} & 2 \sqrt[5]{x^{3} y^{2}} \rightarrow 2 x^{3 / 5} y^{2 / 5}
\end{array}
$$

In our textbook, simplifying rational exponents means to covert to simplified radicals.

$$
125^{2 / 3} \rightarrow(\sqrt[3]{125})^{2} \rightarrow(5)^{2} \quad \rightarrow 25
$$

Rationalizing the denominator: using mathematical properties to change an irrational number (or imaginary) in the denominator into a rational number.
We take advantage of the idea:

$$
\begin{aligned}
& \sqrt{2} * \sqrt{2}=\sqrt{2 * 2}=\sqrt{4}=2 \\
& \sqrt{3} * \sqrt{3}=\sqrt{3 * 3}=\sqrt{9}=3
\end{aligned}
$$

Property of Multiplication

multiplying by ' 1 ' doesn't change the number.

$$
\frac{25}{\sqrt{15}} * \frac{\sqrt{15}}{\sqrt{15}} \rightarrow \frac{25 \sqrt{15}}{15} \rightarrow \frac{5 * 5 * * \sqrt{15}}{5 * 3} \rightarrow \frac{5 \sqrt{15}}{3}
$$

What about higher index numbers?

$$
\frac{1}{\sqrt[3]{x}} * \frac{\sqrt[3]{x^{*} x}}{\sqrt[3]{x^{*} x}} \rightarrow \frac{\sqrt[3]{x^{*} x}}{\sqrt[3]{x^{*} x^{*} x}} \rightarrow \frac{\sqrt[3]{x^{2}}}{x}
$$

How many more 'x's are needed in the denominator radicand?
Remember: the cubed root of x -cubed equals x . $\sqrt[3]{x^{3}}=x$
We need two more x's under the denominator radical.
Using the multiply powers property we don't have to write out all the individual x 's.
$\frac{1}{\sqrt[3]{x}} * \frac{\sqrt[3]{x^{2}}}{\sqrt[3]{x^{2}}} \rightarrow \frac{\sqrt[3]{x^{2}}}{x}$

Rationalizing a binomial radical Denominator

$$
\frac{1}{\sqrt{3}-5}
$$

Multiply by the conjugate of the denominator
(using the Identity Property of multiplication)
$\frac{1}{(\sqrt{3}-5)} * \frac{(\sqrt{3}+5)}{(\sqrt{3}+5)}$
Multiply by "one in the form of..."
$\rightarrow \frac{\sqrt{3}+5}{(9-25)} \rightarrow \frac{\sqrt{3}+5}{-14} * \frac{-1}{-1} \quad \rightarrow \frac{-\sqrt{3}-5}{14}$

