Math-1050 Session \#26

6.6: Solve Exponential and Logarithmic Equations And
6.7: Compound Interest

The easiest Exponential Equation

$$
\begin{array}{lc}
2^{x}=2^{4-x} & \text { Exponents have to be equal to each other! } \\
x=4-x & x=2 \\
+\mathrm{x} \quad+\mathrm{x} & \text { Check your answer! } \\
2 x=4 & 2^{2}=2^{4-2} \\
\div \mathrm{x} \quad \div \mathrm{x} & \\
7^{2 x+1}=7^{13-4 x} & x=2 \\
2 x+1=13-4 x & \\
+4 \mathrm{x} \quad+4 \mathrm{x} \\
6 x+1=13 \\
-1 & -1
\end{array}
$$

Solving using "convert to same base"

$$
\begin{array}{ll}
2^{4 x-1}=8^{x-1} & \text { "convert to same base" } \\
2^{4 x-1}=\left(2^{3}\right)^{\mathrm{x}-1} & \begin{array}{c}
\text { Exponent of a power } \\
\text { Exponent Property }
\end{array} \\
2^{4 x-1}=2^{3 x-3} & x=-2 \\
4 x-1=3 x-3 & \text { Check your answer! } \\
-3 x & 2^{4(-2)-1}=8^{-2-1} \\
x-1=-3 & 2^{-9}=8^{-3} \\
+1 & \left(2^{-9}=8^{-3}\right)^{-1} \\
& 2^{9}=8^{3} \\
& 512=512
\end{array}
$$

Sometimes you can't rewrite the exponentials with the same bases so you have no choice. Use log of a power property.

\[

\]

Instead of Using the Log of a Power Property Using Log base 'e', you can use log base 5 .

$$
\begin{array}{cc}
5^{x}=7^{2 x-1} & x=2.42 x-1.21 \\
\log _{5} 5^{x}=\log _{5} 7^{2 x-1} & +1.21 \\
x \log _{5} 5=(2 x-1) \log _{5} 7 & 1.21+x=2.42 x \\
x=(2 x-1) 1.20906 & -x \quad-x \\
x=(2 x-1)(1.21) & 1.21=1.42 x \\
& \div 1.42 \div 1.42 \\
& x=0.85
\end{array}
$$

Instead of Using the Log of a Power Property Using Log base '5', you can use log base 7 .

$$
\begin{array}{cc}
5^{x}=7^{2 x-1} & 1=1.17 x \\
\log _{7} 5^{x}=\log _{7} 7^{2 x-1} & \div 1.17 \div 1.17 \\
x \log _{7} 5=(2 x-1) \log _{7} 7 & x=0.85 \\
0.82709 x=2 x-1 & \\
+1 \quad+1 & \\
-0.83 x \quad-0.83 x & \\
1=1.17 x &
\end{array}
$$

Sometimes the questions will ask for the EXACT SOLUTION.

$$
\begin{array}{lc}
5^{x}=7^{2 x-1} & 1=x\left(2-\log _{7} 5\right) \\
\log _{7} 5^{x}=\log _{7} 7^{2 x-1} & \div\left(2-\log _{7} 5\right) \div\left(2-\log _{7} 5\right) \\
x \log _{7} 5=(2 x-1) \log _{7} 7 & \\
x \log _{7} 5=2 x-1 & x=\frac{1}{\left(2-\log _{7} 5\right)} \\
+1 & +1 \\
-x \log _{7} 5=-x \log _{7} 5 & \\
1=2 x-x \log _{7} 5 &
\end{array}
$$

Solving using "log of a power" property

$$
8^{x+2}=4^{x-2} \quad \text { Take natural log of both side }
$$

$\ln 8^{x+2}=\ln 4^{x-2}$ "log of pwr property"

$$
\begin{array}{cl}
(x+2) \ln 8=(x-2) \ln 4 & 3 x+6=2 x-4 \\
\div \ln 8 & \div \ln 8 \\
(x+2)=(x-2) \frac{\ln 4}{\ln 8} \text { simplify } & x=-10
\end{array}
$$

$x+2=(x-2)(0.6666666)$ simplify

$$
\begin{aligned}
& x+2=(x-2)\left(\frac{2}{3}\right) \\
& 3(x+2)=(x-2)\left(\frac{2}{3}\right)(3)
\end{aligned}
$$

Solve using the "log of a power property"

$5^{x+2}=4^{x-2} \quad$ Take natural log of both sides

$$
\begin{aligned}
& \ln 5^{x+2}=\ln 4^{x-2} \quad \text { Power property } \\
& (x+2) \ln 5=(x-2) \ln 4 \\
& 2=-0.1387 x-1.7227 \\
& \div \ln 5 \\
& \ln 5+1.7227 \\
& \text { +1.7227 } \\
& x+2=(x-2) \frac{\ln 4}{\ln 5} \\
& x+2=(x-2)(0.8614) \\
& x+2=0.8614 x-1.7227 \\
& \text {-x } \\
& 3.7227=-0.1387 x \\
& \div-0.1387 \div-0.1387 \\
& x=-26.8399
\end{aligned}
$$

When the unknown value is in the exponent, always

 remember " a log is an exponent"$$
\begin{aligned}
& 8^{x}-2=5 \text { "Isolate the exponential" } \\
& +2+2 \\
& 8^{x}=7 \quad \text { "convert to a log" } \\
& x=\log _{8} 7 \\
& x=0.9358
\end{aligned}
$$

Solve using "undo the exponential"

$$
\begin{gathered}
3^{2 x-1}+5=7 \text { "Isolate the exponential" } \\
-5 \quad-5
\end{gathered}
$$

$3^{2 x-1}=2 \quad$ "Undo the exponential"

$$
2 x-1=\log _{3} 2 \underset{\substack{\rightarrow \text { Change of } \\ \text { base formula }}}{ } 2 x-1=\frac{\ln 2}{\ln 3}
$$

$$
2 x-1=0.63093
$$

$$
+1 \quad+1
$$

$$
2 x=1.63093
$$

$$
\div 2 \quad \div 2
$$

$$
\begin{gathered}
2 x-1=0.63093 \\
+1 \quad+1 \\
2 x=1.63093 \\
\div 2
\end{gathered} \div 2
$$

$$
x=0.815
$$

$$
x=0.815
$$

"Quadratic Form": a trinomial that looks like a standard form quadratic of the form $\quad y=a x^{2 n}+b x^{n}+c$

$$
\begin{array}{ll}
y=x^{4}+3 x^{2}+2 & \text { Use "m-substitution" } \\
& x^{4}=m^{2}, x^{2}=m^{1}
\end{array}
$$

$y=m^{2}+3 m^{1}+2 \quad$ Factor
$y=(m+2)(m+1) \quad$ Use "m-substitution"
$y=\left(x^{2}+2\right)\left(x^{2}+1\right) \quad$ Zeroes: $\quad x=i \sqrt{2},-i \sqrt{2}, i,-i$

Extraneous solution: an apparent solution that does not work when plugged back into the original equation.

Square root equations Radicands cannot be negative

$$
5=\sqrt{2 x-3}
$$

Domain of possible solutions: $\quad 2 x-3 \geq 0$

$$
x \geq \frac{3}{2}
$$

$$
5=\sqrt{2 x-3} \quad 25=2 x-3 \quad 28=2 x \quad x=14
$$

Apparent solution $(x=14)$ is in the domain of possible solutions
$x=14$ is not an extraneous solution.

Log equations Logarands must be positive

$$
5=\log _{3}(2 x-3)
$$

Domain of possible solutions: $\quad 2 x-3>0 \quad x \geq \frac{3}{2}$
$5=\log _{3}(2 x-3) \quad$ "A log is an exponent."
$3^{5}=2 x-3 \quad 243=2 x-3 \quad 246=2 x \quad x=123$
Apparent solution $(x=123)$ is in the domain of possible solutions
$x=123$ is not an extraneous solution.
"Quadratic Form": a trinomial that looks like a standard form quadratic of the form $\quad y=a x^{2 n}+b x^{n}+c$

$$
\begin{aligned}
& y=3^{2 x}+3^{x}-2 \quad \text { Use "m-substitution" } m=3^{x} \\
& y=\left(3^{x}\right)^{2}+3^{x}-2 \quad y=m^{2}+m-2 \quad \text { Factor } \\
& 0=(m+2)(m-1) \quad \text { Find the zeroes } \\
& m=-2,1 \quad \text { Use "m-substitution" } m=3^{x} \\
& 3^{x}=-2 \quad 3^{x}=1 \quad \text { "A log is an exponent" } \\
& x=\log _{3}(-2)
\end{aligned} \quad x=\log _{3}(1) . ~ l y
$$

Domain of log function: $x>0$
Extraneous solution

$$
x=0
$$

The easiest \log equation. $\quad \log (x+3)=\log (2 x-1)$

$$
x+3=2 x-1 \quad \rightarrow x=4
$$

Domain of possible solutions is the more restictive of:

$$
\begin{array}{rll}
x+3 & >0 & \text { or } \\
x>-3 & & 2 x-1>0 \\
x & & x>\frac{1}{2}
\end{array}
$$

Apparent solution $(x=2)$ is in the domain of possible solutions

$$
x=4 \text { is not an extraneous solution. }
$$

$\log _{2} 5^{x}=5 \quad$ Power property of logarithms
$x \log _{2} 5=5 \rightarrow$ Change of base $x \frac{\ln 5}{\ln 2}=5$

$$
\begin{gathered}
2.32192 x=5 \\
\div 2.32192 \quad \div 2.32192
\end{gathered}
$$

$$
x=2.1534
$$

\rightarrow Approximate solution

$$
\log _{3} 4^{5 x}=6
$$

Use inverse property of multiplication

$$
x=5 \frac{\ln 2}{\ln 5}
$$

\rightarrow Exact solution

$\log 2 x+\log (x-5)=2 \quad$ "condense the product"

 $\log 2 x(x-5)=2 \quad$ "undo the logarithm"$10^{2}=2 x(x-5)$
Quadratic \rightarrow put in standard form
$100=2 x^{2}-10 x$
$2 x^{2}-10 x-100=0 \quad$ Divide both sides by ' 2 '
$x^{2}-5 x-50=0 \quad$ factor
$(x-10)(x+5)=0 \quad$ Zero product property

$$
x=10,-5
$$

Check for extraneous solutions:

$$
\log 2 x+\log (x-5)=2
$$

$\log (2 * 10)+\log (10-5)=2$
$\log (20)+\log (5)=2 \quad$ All logarands are positive © $\log 100=2 \quad$ "Condense the product" $\quad 10^{2}=100$

Checks
$\log (2)(-5)+\log (-5-5)=2$
$\log (-10)+\log (-10)=2 \quad$ Negative logarands $: \partial$
$x=5$ is an extraneous solution.

More complicated Logarithmic Equations

$$
\begin{aligned}
& 2+\log _{2} 5^{x-2}=7 \quad \text { "Isolate the logarithm" } \\
& -2 \\
& \log _{2} 5^{x-2}=5 \quad \text { "undo the logarithm" } \\
& \begin{array}{c}
(x-2) \log _{2} 5=5 \\
\div \log _{2} 5 \quad \div \log _{2} 5 \\
x-2=2.15338 \\
+2 \quad+2 \quad \text { Add '2' to both sides. } \\
x=4.1524
\end{array}
\end{aligned}
$$

$$
\begin{array}{cl}
\log _{4}(5 x-1)=3 & \text { "Isolate the logarithm" } \\
5 x-1=4^{3} & \text { "undo the logarithm" }
\end{array}
$$

$$
5 x-1=64 \quad \text { Add ' } 1 \text { ' to both sides }
$$

$$
5 x=65 \quad \text { Divide both sides by ' } 5 \text { ' }
$$

$$
x=13
$$

Plug back in to check!
$\log _{4}(5 * 13-1)=3$

$$
\log _{4} 64=3 \quad \text { Checks }
$$

Exponential Data: what is the equation?

Another way to think about it.

$$
f(x)=4^{x}
$$

You deposit \$100 money into an account that pays 3.5\% interest per year. The "rent" is "paid" yearly. How much money will be in the account at the end of the 1st year?

$$
\left.\begin{array}{rl}
A(1)=100(1+0.035)^{(1)} & A(1)
\end{array}=100(1.035)^{(1)}\right)
$$

How much will be in the account after the $2^{\text {nd }}$ year?

$$
\begin{aligned}
& A(2)=A(1)(1.035)^{(1)} \\
& A(2)=103.5(1.035)^{(1)} \\
& A(2)=100(1.035)^{(1)}(1.035)^{(1)} \quad A(t)=A_{0}(1+r)^{t} \\
& A(2)=100(1.035)^{(2)} \\
& A(2)=\$ 107.12
\end{aligned}
$$

You deposit \$100 money into an account that pays 2\% interest per year. But the "rent" is paid "monthly." What is the interest rate that is paid each month?

$$
\frac{2 \%}{\text { year }} * \frac{1 \text { year }}{12 \text { months }}=\frac{0.17 \%}{\text { month }}=\frac{0.0017}{\text { month }}
$$

How much money will be in the account after 5 months?

$$
\begin{aligned}
& A(t)=A_{0}(1+r)^{t} \\
& A(5)=100(1+0.0017)^{5} \quad \text { Time uses units of months } \\
& A(5 \text { months })=\$ 100.85 \\
& \text { How much money will be in the account after } 7 \text { years? } \\
& A(7 \text { years })=100(1+0.0029)^{12(7)} \quad \text { Time uses units of years. } \\
& A(7)=\$ 127.54 \quad A(t \text { in yrs })=A_{0}(1+r / n)^{n t}
\end{aligned}
$$

" n ": number of times "rent" is paid per year

Compound interest: the interest (rent) that is paid at the end of period of time.

$$
A(t \text { in yrs })=A_{0}(1+r / n)^{n t}
$$

Compounded annually: " n " $=? \quad A(t$ in yrs $)=A_{0}(1+r / 1)^{1^{*} t}$
Compounded semi-annually: " n " $=$? $A(t$ in yrs $)=A_{0}(1+r / 2)^{2^{* t}}$
Compounded quarterly: " n " = ? $\quad A(t$ in yrs $)=A_{0}(1+r / 4)^{4^{4 *}}$
Compounded monthly: " n " $=$? $\quad A(t$ in yrs $)=A_{0}(1+r / 12)^{12^{* *} t}$
Compounded weekly: " n " $=? \quad A(t$ in yrs $)=A_{0}\left(1+r / 522^{52^{2 *} t}\right.$
Compounded daily: " n " $=? \quad A(t$ in yrs $)=A_{0}(1+r / 365)^{365^{* *}}$
Compounded hourly: " n " $=? ~ A(t$ in yrs $)=A_{0}(1+r / 8760)^{8700^{* t} t}$
Compounded minutely: " $n "=? A(t$ in yrs $)=A_{0}(1+r / 525600)^{525600 * t}$

You deposit \$100 money into an account that pays 3\% interest per year. The interest is "compounded" monthly. How much money will be in the account at the end of the 5th year?

$$
\begin{gathered}
A(t)=A_{0}(1+r / k)^{k t} \quad A(5)=100(1+0.03 / 12)^{12(5)} \\
A(5)=\$ 116.16
\end{gathered}
$$

What is the doubling time for this account?

$$
\begin{aligned}
& 200=100(1+0.035 / 12)^{12 t} \\
& 2=(1.0029)^{12 t} \\
& \log _{1.0029}(2)=12 t \quad 239.4=12 t \quad t=19.9 \mathrm{yrs}
\end{aligned}
$$

Continuous compounding $\quad A(t)=A_{0}(1+r / k)^{k t}$

$$
A(t)=A_{0} e^{r t}
$$

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=\mathrm{e}
$$

A bank compounds interest continuously. The annual interest rate is 5.5%. How long would it take for the money in the account to triple?

$$
\begin{array}{ll}
3 A_{0}=A_{0} e^{0.055 t} & \ln 3=0.055 t \\
3=e^{0.055 t} & t=19.97 \mathrm{yrs}
\end{array}
$$

Present Value:

"Present value of " A " dollars to be received at ' t ' years, annual interest rate ' r ', compounded ' n ' times per year."
\rightarrow The original investment amount is the unknown value.

Future value.

$$
A_{0}=A(t) * e^{-r t} \quad A_{0}=A(t) *(1+r / k)^{-k t}
$$

Effective Rate of Return

The equivalent simple interest rate (compounding period = 1 yr) of an investment that has a different annual interest rate and is compounded more than once per year.
\rightarrow The effective rate of return is the unknown value.

$$
A_{0}\left(1+r_{e f f}\right)^{t}=A_{0}\left(1+r_{n e w} /_{k}\right)^{k t}
$$

Assume 1 year and the same investment in each account

$$
\begin{aligned}
& 1+r_{e f f}=\left(1+r_{n e w} / k\right)^{k} \\
& r_{e f f}=\left(1+r_{n e w} / k\right)^{k}-1
\end{aligned}
$$

