Math-1050
 Session \#23

Exponential Function

Power: An expression formed by repeated multiplication of the same factor.

$$
3 x^{4} \rightarrow 3 * x^{4} \rightarrow 3 * x * x * x * x
$$

Base: the number that is repeatedly multiplied
Exponent: the number of times the base is used as a factor The exponent applies to the number or variable immediately to its left, not to the coefficient !!!

Power Function: A single-term equation whose base is the input variable.

$$
f(x)=3 x^{4}
$$

Properties of Exponents

Multiply Powers Property: when you multiply same-based powers, you add the exponents.

$$
\begin{aligned}
& \left(x^{2}\right)\left(x^{3}\right)=(x * x)(x * x * x)=x^{5} \\
& \quad x^{2} x^{3}=x^{2+3}=x^{5}
\end{aligned}
$$

Exponent of a Power Property: a power (base and an exponent) that has another exponent $\left(x^{2}\right)^{3}$ is simplified by multiplying the exponents

$$
\begin{aligned}
& \left(x^{2}\right)^{3}=(x * x)(x * x)(x * x)=x^{6} \\
& \left(x^{2}\right)^{3}=x^{2 * 3}=x^{6}
\end{aligned}
$$

Properties of Exponents

Exponent of a Product Property: (an exponent of two or more different-based powers that are being multiplied together) is simplified by multiplying the exponent outside of the parentheses by each of the exponents inside of the parentheses.

$$
\begin{aligned}
& \left(x y^{3}\right)^{2}=\left(x y^{3}\right)\left(x y^{3}\right)=x x y^{3} y^{3}=x^{2} y^{6} \\
& \left(x^{1} y^{3}\right)^{2}=x^{1 * 2} y^{3 * 2}=x^{2} y^{6}
\end{aligned}
$$

This makes it seem that there is a "distributive property of exponents" \rightarrow there is NOT.

$$
(x+y)^{2} \neq x^{2}+y^{2} \quad(x+y)^{2}=x^{2}+2 x y+y^{2}
$$

Properties of Exponents

Negative Exponent Property "Grab and drag"

$$
x^{-2}=\frac{1 * x^{-2}}{1}=\frac{1 * x^{-2}}{1}=\frac{1}{x^{2}}
$$

When you "Grab and drag" the base and its exponent across the "boundary line" between numerator and denominator, you just change the sign of the exponent.

Zero Exponent Property

$$
10^{3}=1000 \quad 10^{2}=100 \quad 10^{1}=10 \quad 10^{0}=1
$$

Any base raised to the zero power simplifies to one.

The "Parent" Exponential Function

$$
y=b^{x} \text { exponent }
$$

$y=2^{x}$ (base 2 exponential function)
$y=3^{x}$ (base 3 exponential function)
$y=\left(\frac{1}{2}\right)^{x}$ (base $1 / 2$ exponential function)
The base MUST BE positive and CANNOT equal 1.

$$
b=(0,1) \cup(1, \infty)
$$

Fill in the output values of the table and graph the points.

$$
f(x)=2^{x}
$$

$$
\begin{aligned}
& \text { Growth Factor is the } \\
& \text { base of the exponential } \\
& \left(\frac{2}{1}\right)^{-2}=\left(\frac{1}{2}\right)^{2}=\frac{1}{4}=0.25 \quad \begin{array}{c}
2^{0}=1 \\
\text { "zero }
\end{array} \\
& \text { exponent } \\
& \text { property" }
\end{aligned}
$$

Exponential Function $f(x)=2^{x}$

Will the ' y ' value ever reach zero (on the left end of the graph)? As the denominator gets bigger and bigger, the decimal version of the fraction gets smaller and smaller.

x	$2^{()}$	y
-1	$2^{(-1)}$	$1 / 2$
-2	$2^{(-2)}$	$1 / 4$
-3	$2^{(-3)}$	$1 / 8$
-4	$2^{(-4)}$	$1 / 16$
-5	$2^{(-5)}$	$1 / 32$
	$1 / 2$	
$f(-2)=1 / 4$		
$f(-3)=1 / 8$		
$f(-4)=1 / 16$		
$f(-5)=1 / 32$		

'y' gets closer and closer to zero but never reaches zero.

What is the equation?

x-values increment by ' 1 ' each time.

Make a ratio: "next over previous"

$$
\frac{f(x+1)}{f(x)}=\frac{\text { next }}{\text { previous }}=\frac{1}{3}
$$

$$
\frac{n e x t}{\text { previous }}=\frac{3}{9}
$$

This number is the "growth factor"
The "growth factor" is the base of the exponential.

$$
f(x)=(1 / 3)^{x}
$$

In what portion of the table is it easier to find the growth factor?
Between integer output values.

What is the equation? x-values increment by one each time.

x	$f(x)$
-2	0.0625
-1	0.25
0	1
1	4
2	16
3	64
4	256

Make a ratio: "next over previous"

$$
\begin{aligned}
& \frac{\text { next }}{\text { previous }}=\frac{16}{4} \\
& \frac{\text { next }}{\text { previous }}=\frac{4}{1}
\end{aligned}
$$

This number is the "growth factor"

$$
f(x)=4^{x}
$$

Horizontal Asymptote: a horizontal line the graph approaches but

$$
f(x)=2^{x}
$$ never reaches.

$$
y=0
$$

Domain $=$?

$$
x=(-\infty, \infty)
$$

range $=$?

$$
y=(0, \infty)
$$

Parentheses on left end of the interval \rightarrow range does include $y=0$

y -intercept $=? \quad f(0)=y$ intercept $\quad f(0)=2^{0}=1$

Exponential Growth: the graph is increasing (as you go from left to right the graph goes upward). Growth occurs when the base of the exponential is greater than 1.

$$
y=b^{x} \quad \text { ' } \mathrm{b}>1 \rightarrow \text { growth }
$$

$$
f(x)=2^{x} \quad g(x)=3^{x}
$$

Why do both graphs have the same y-intercept?

$$
\begin{aligned}
& f(0)=2^{0}=1 \\
& g(0)=3^{0}=1
\end{aligned}
$$

All exponential "parent functions" have $(0,1)$ as the y-intercept.
\rightarrow Replacing ' x ' with '($(-x$)' causes a reflection across the y-axis

$g(x)=2^{x} \rightarrow$ Reflect across the y-axis $f(x)=2^{-x}$
$f(x)=\left(2^{-1}\right)^{x}$
$f(x)=\left(\frac{1}{2}\right)^{x}$

Exponent of a Power Property of Exponents

Negative Exponent Property of Exponents

Exponential Decay: the graph is decreasing (as you go from left to right the graph goes downward). This occurs when the base of the exponential is between 0 and 1 .

$$
\begin{aligned}
& y=b^{x} \\
& 0<\text { 'b' < } 1 \rightarrow \text { decay } \\
& f(x)=\left(\frac{1}{2}\right)^{x}
\end{aligned}
$$

$f(x)=b^{x} \quad$ Can the base be zero? $\quad b \neq 0$ $g(x)=(0)^{x}$

x	y
-1	$1 / 0=? ?$
0	$? ? ?$
1	0

$$
\begin{gathered}
g(-1)=\left(\frac{0}{1}\right)^{-1} \\
g(-1)=\left(\frac{1}{0}\right)^{1} \\
g(0)=(0)^{0} \\
=0 ?=1 ? \\
g(1)=(0)^{1}
\end{gathered}
$$

\rightarrow negative number input values are not "mapped" to an output value.
\rightarrow input value " 0 " has an ambiguous output value
\rightarrow Any positive number input value is "mapped" to " 0 "

Can the 'base' be negative?
$f(x)=a b^{x}$
$g(x)=(-2)^{x}$

' b ' $>1 \rightarrow$ growth
$0<' b$ ' < $1 \rightarrow$ decay

$b \neq$ negative numbers

Can the base be $1 ?$
$f(x)=a b^{x}$
$g(x)=(1)^{x}$
$\mathrm{b} \neq 1 \quad \hat{A}^{y}$

x	y
-1	1
0	1
1	1

$(1)^{-1}$
$(1)^{0}$
1^{1}

$$
\begin{aligned}
& 0<b<1, \text { OR } \mathrm{b}>1 \\
& b=(0,1) \cup(1, \infty)
\end{aligned}
$$

$f(x)=2^{x} \quad g(x)=3(2)^{x}$

\mathbf{x}	$\left.2^{(}\right)$	$\mathrm{f}(\mathrm{x})$	$g(x)$
$-\mathbf{- 2}$	2^{-2}	0.25	0.75
-1	2^{-1}	0.5	1.5
0	2^{0}	1	3
1	2^{1}	2	6
$\mathbf{2}$	2^{2}	4	12

Vertically stretched by a factor of 3

Horizontal $\quad y=0$
asymptote: $y=0$

$$
\text { Domain }=? \quad \begin{aligned}
& x=(-\infty, \infty) \\
& \\
& x=(-\infty, \infty)
\end{aligned}
$$

$$
\begin{array}{ll}
\text { range }=? & y=(0, \infty) \\
& y=(0, \infty)
\end{array}
$$

$f(x)=2^{x} \quad \mathrm{k}(x)=2^{x}+4$

x	$2^{()}$	$\mathrm{f}(\mathrm{x})$	$k(x)$
-2	2^{-2}	0.25	4.25
-1	2^{-1}	0.5	4.5
0	2^{0}	1	5
1	2^{1}	2	6
2	2^{2}	4	8

y -intercept $=$? $f(x):(0,1)$
Domain $=? \quad x=(-\infty, \infty)$

$$
x=(-\infty, \infty)
$$

$$
g(x):(0,5)
$$

Transformations of the Exponential Function

$f(x)=2^{x}$ Base-2 Exponential Parent Function
$h(x)=3(2)^{x}+4$

Transformation Form of the Exponential Function $y=a b^{x}+k \longleftarrow$ vertical shift and horizontal Asymptote
y-intercept: $(0, a+k)$

$$
h(0)=3(2)^{0}+4
$$

$$
h(0)=7
$$

Growth Factor (the base of the exponential) Horiz. asympt: $y=k$)

$$
y=4
$$

$f(x)=2^{x} \quad \mathrm{k}(x)=-(2)^{x}$

\mathbf{x}	$2^{()}$	$\mathrm{f}(\mathrm{x})$	$k(x)$
-2	2^{-2}	0.25	-0.25
-1	2^{-1}	0.5	-0.5
0	2^{0}	1	-1
1	2^{1}	2	-2
2	2^{2}	4	-4

Horizontal $f(x): y=0$
asymptote: $g(x): y=0$
Domain $=$? $\quad x=(-\infty, \infty)$

$$
x=(-\infty, \infty)
$$

y -intercept $=$? $f(x):(0,1)$

$$
g(x):(0,-1)
$$

Initial Value: (of the exponential) is the vertical

 stretch factor (for problems with no up/down shifts)If in input is time ("stopwatch time")
 the initial value occurs when $t=0$.

$$
\begin{aligned}
& f(t)=3(2)^{t} \quad \text { Domain: } x=[0, \infty) \\
& f(0)=3(2)^{0}=?
\end{aligned}
$$

$f(0)=3$
What is the initial value of: $\quad f(t)=0.5(3)^{t}$

Solving a Linear Equation:
"Isolate the variable"

What does "solve" a single variable equation mean?
Find the value of ' x ' that makes the equation true.
$3 x+2=4 x-5$ subtract 3 x from both sides
$2=x-5 \quad$ add $\underline{5}$ to both sides
$7=x$

Solving an Exponential Equation: The easiest problem

$$
\begin{array}{ll}
2^{x}=2^{4-x} & \text { Exponents have to be equal to each other! } \\
x=4-x & x=2 \\
+\quad+\mathrm{x} & \text { Check your answer! } \\
2 x=4 & 2^{2}=2^{4-2} \\
\div 2 \div 2 & x=2 \\
7^{2 x+1}=7^{13-4 x} & \\
2 x+1=13-4 x & \\
+4 \mathrm{x} \quad+4 \mathrm{x} \\
6 x+1=13 \\
-1 & -1
\end{array}
$$

Equivalent Powers with different bases.

$$
\begin{aligned}
& 4^{1}=2^{2} \\
& 8^{1}=2^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \left.(4)^{2}=\frac{\text { Harder }}{2}\right)^{2}=2^{4} \\
& 9^{2}=\left(3^{2}\right)^{2}=3^{4} \\
& \left(9^{2 x}=\left(3^{2}\right)^{2 x}=3^{4 x}\right.
\end{aligned}
$$

Change the base of the power as indicated:

$$
\begin{aligned}
& 27^{1}=3^{?} \\
& 16^{2}=4^{?} \\
& 25^{2 x}=5^{?}
\end{aligned}
$$

Solving using "convert to same base"

$$
\begin{array}{lc}
2^{4 x-1}=8^{x-1} & \text { "convert to same base" } \\
2^{4 x-1}=\left(2^{3}\right)^{\mathrm{x}-1} & \begin{array}{c}
\text { Exponent of a power } \\
\text { Exponent Property }
\end{array} \\
2^{4 x-1}=2^{3 x-3} & x=-2 \\
4 x-1=3 x-3 & \begin{array}{c}
\text { Check your answer! }
\end{array} \\
-3 x \quad-3 x & 2^{4(-2)-1}=8^{-2-1} \\
x-1=-3 & 2^{-9}=8^{-3} \\
+1 & \left(2^{-9}=8^{-3}\right)^{-1} \\
& 2^{9}=8^{3} \\
& 512=512
\end{array}
$$

Solving using "convert to same base"

$$
\begin{array}{cc}
9^{2 x}=27^{x-1} & \text { "convert to same base" } \\
\left(3^{2}\right)^{2 x}=\left(3^{3}\right)^{x-1} & \begin{array}{l}
\text { Power of a power } \\
\text { Exponent Property }
\end{array} \\
3^{2 * 2 x}=3^{3(x-1)} & \text { Check your answer! } \\
3^{4 x}=3^{3 x-3} & 9^{2(-3)}=27^{-3-1} \\
4 x=3 x-3 & 9^{-6}=27^{-4} \\
x=-3 & \left(9^{-6}=27^{-4}\right)^{-1} \\
9^{6}=27^{4} \\
& 531441=531441
\end{array}
$$

$$
a_{n}=\left(1+\frac{1}{n}\right)^{n}
$$

n	1	2	3	10	40	80	120	200	700	1000
a_{n}	2.00	2.25	2.37	2.59	2.69	2.70	2.71	2.71	2.72	2.72

$\lim _{x \rightarrow \infty} a_{n}=\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x} \approx ?=e$

$$
\left(e^{2 x}\right)^{9}=\frac{1}{e^{6 x-2}}
$$

Exponent of a Power Property

$$
e^{18 x}=e^{-6 x+2}
$$

Exponents must be equal
$18 x=-6 x+2$

$$
24 x=2
$$

