Math-1050
Session \#19
Inverse Functions

Function: A relation where each input has exactly one output.


One-to-One Function: Each input has exactly one output, and each output has exactly one input.


Inverse Relation: A relation that interchanges the input and output values of the original relation.

Relation: $\quad(-2,5),(5,6),(-2,6),(7,6)$

Inverse Relation: $\quad(5,-2),(6,5),(6,-2),(6,7)$

## Inverse Relations

$$
\begin{array}{rll}
(x, y)=(2,4) & \longrightarrow & \text { Inverse the two }
\end{array} \quad \longrightarrow(4,2)
$$



## What is the pattern?

A reflection across the line $y=x$.

Inverse Reflection Principle

Inverse Functions $\quad$ Switch ' $x$ ' and ' $y$ ' (then solve for ' $y$ ')

$$
y=2 x-1 \rightarrow x=2 y-1 \rightarrow y=\frac{x}{2}+\frac{1}{2}
$$



We're not used to graphing ' $y$ ' as an input value, then finding the output value ' $x$ '

So...we can rewrite the equation as ' $y$ ' in terms of ' $x$ ' (it's the same relation).

Bottom line: inverse functions are reflections across the line $y=x$.

Find the inverse of: $f(x)=4 x+2 \quad$ Exchange ' $x$ ' and ' $y$ '

$$
x=4 y+2
$$

This IS the inverse function (written as: "x as a function of $y$ ")
Rewrite it so that it is written as: " $y$ as a function of $x$ ")

$$
x-2=4 y \quad \text { subtract ' } 2 \text { ' (left and right) }
$$

$\underline{x}-\frac{2}{4}=\underline{4 y} \quad$ Divide (all of the) left and right by 4

Reduce the fractions

Rearrange into "slope intercept form"

$$
y=\frac{x}{4}-\frac{1}{2}
$$

This is the inverse of: $y=4 x+2$

Function Notation: "the inverse of $\mathrm{f}(\mathrm{x})$ "

$$
f(x) \quad f^{-1}(x)
$$

$f^{-1}(x)$ means "the inverse of $f(x)$ "
Do not confuse this notation with the negative exponent property:

$$
x^{-1}=\frac{1}{x^{1}}
$$

Negative exponent on a number or an expression means "flip the number" (the reciprocal of the number)"

The inverse of a function means "exchange ' $x$ ' and ' $y$ ' (then solve for ' $y$ ')."

If you have the graph of a relation; how can you tell if the relation is a function?


Vertical Line Test if the line intersects the graph more than once, it is NOT a function.

If you have a graph; how can you tell if the function is one-to-one?
$f(x)=x^{2}$


Horizontal Line Test: if the line intersects the graph more than once, then the function is one-two-one and the Inverse of the function is NOT a function.


One-to-One functions
For every input there is exactly one output (the definition of a function) AND every output has exactly one input.
$\rightarrow$ It passes both the horizontal and vertical line test.


Which function is "one-to-one" ?

$$
f(x)=\sqrt{x-2} \quad f^{-1}(x)=?
$$

Exchange ' $x$ ' and ' $y$ ' in the original relation.

$$
x=\sqrt{y-2}
$$

This IS the inverse function (written as: "x as a function of $y$ ")
Rewrite it so that it is written as: " $y$ as a function of $x$ ")
$(x)^{2}=(\sqrt{y-2})^{2} \quad x^{2}=y-2 \quad y=x^{2}+2$



Why do we only graph the right side of the parabola?
Since the $x-y$ pairs of SQRT are all positive, then the $x-y$ pairs of the inverse of the SQRT (square function) will be positive.

Find the inverse of: $\quad f(x)=x^{3}-3$ Exchange ' $x$ ' and ' $y$ '
$x=y^{3}-3 \quad$ This $\underline{I S}$ the inverse function, but it is written in the form " $x$ as a function of $y$ "
Rewrite it so that it is written as: " $y$ as a function of $x$ ")

$$
x+3=y^{3} \quad \text { Add ' } 3 \text { ' (left and right) }
$$

$$
\sqrt[3]{x+3}=\sqrt[3]{y^{3}} \quad \text { cubed root both sides }
$$

$$
\sqrt[3]{x+3}=y
$$

Simplify
$f^{-1}(x)=\sqrt[3]{x+3}$
Is the inverse of: $f(x)=x^{3}-3$

## Inverse Function Defined

If $f(x)$ is a one-to-one function with Domain " $D$ " and Range " $R$ " then the inverse function of $f(x)$, denoted

$$
f^{-1}(x)
$$

Is a function whose Domain is " $R$ " and whose Range Is " $D$ " defined by:

$$
f^{-1}(b)=a \quad \text { if and only if } \quad f(a)=b
$$

This is just saying the domain of a function is the range of its inverse function.

$$
f(x)=\frac{2}{x-3}+4 \quad f^{-1}(x)=?
$$

$$
x=\frac{2}{y-3}+4
$$

$$
y-3=\frac{2}{(x-4)}
$$

$$
x-4=\frac{2}{y-3}
$$

$$
y=\frac{2}{(x-4)}+3
$$

$$
(y-3)(x-4)=2
$$

$$
\begin{array}{cc}
f(x)=\frac{3 x}{x+1}+6 & f^{-1}(x)=? \\
x=\frac{3 y}{y+1}+6 & x y-6 y+x-6=3 y \\
x-6=\frac{3 y}{y+1} & x y-6 y-3 y=-x+6 \\
(y+1)(x-6)=3 y & y(x-9)=-x+6 \\
& f^{-1}(x)=\frac{-x+6}{(x-9)}
\end{array}
$$

multiply this out!

## Natural Logarithm Function



## Exponential Function

$$
\operatorname{li}_{\substack{ \\\hline \\ \hline}}
$$

Domain $=$ ?
Range $=$ ?


Domain $=$ ?
Range = ?

Finding the range of a function can sometimes be difficult.

$$
\begin{array}{lc}
\hline f(x)=\frac{3 x-1}{x+2} & \text { Range of } f(x)=\text { domain of } \quad f^{-1}(x) \\
x=\frac{3 y-1}{y+2} & y=\frac{-2 x-1}{x-3} \\
x(y+2)=3 y-1 & f^{-1}(x)=\frac{-2 x-1}{x-3} \\
x y+2 x=3 y-1 & \text { Range of } f(x)=\text { domain of } f^{-1}(x) \\
x y-3 y=-2 x-1 & \text { Range of } f(x): y \neq 3 \\
y(x-3)=-2 x-1 &
\end{array}
$$

Verifying the Inverse of One-to-One Functions Algebraically

IF $\quad f(g(x))=x \quad$ (for every ' $x$ ' in the domain of $g(x)$ )
And
IF $g(f(x))=x \quad$ (for every ' $x$ ' in the domain of $f(x)$
THEN: $f(x)$ is a one-to-one function with inverse $g(x)$

Verifying if functions are Inverses of each other.

$$
\begin{gathered}
f(x)=x^{3}+1 \quad g(x)=\sqrt[3]{x-1} \\
f(g(x))=(\sqrt[3]{x-1})^{3}+1 \quad=x-1+1=x \\
g(f(x))=\sqrt[3]{\left(x^{3}+1\right)-1} \quad=\sqrt[3]{x^{3}+1-1}=x
\end{gathered}
$$

Verify that the two functions are inverses of each other.

$$
f(x)=\frac{x+1}{x} \quad g(x)=\frac{1}{x-1}
$$

Verify that the two functions are inverses of each other.

$$
f(x)=\frac{x+2}{3} \quad g(x)=3 x-2
$$

Are $f(x)$ and $g(x)$ inverses of each other?

$$
g(x)=\frac{x+1}{4} \quad f(x)=4 x-1
$$

Are $f(x)$ and $g(x)$ inverses of each other ?

$$
g(x)=\frac{(x-1)^{2}}{5}
$$

$$
f(x)=1+\sqrt{5 x}
$$

## The temperature of a bowl of soup is 100 degrees.

Function A: heating by 10 degrees
Function B: cooling by 10 degrees

The temperature of a bowl of soup is 100 degrees. Apply function A then function B (in sequence) to the bowl of soup. What is the final temperature of the soup?

Temperature $=100+10-10$

Composition of inverse functions
Function A and Function B are inverses of each other.

Function A: "does something" to the input.

Function B: "undoes whatever function A did to the input.
27
Function A "does something" to input value 2

Function B "undoes (whatever A did) to the input value 2

What is the output of function B?

What is the inverse function?

1. $f(x)=\left\{x^{4}, x=[0, \infty)\right\} \quad f^{-1}(x)=\sqrt[4]{x}$
2. $g(x)=x^{2 / 3}$

$$
g^{-1}(x)=x^{3 / 2}
$$

3. $h(x)=x^{4 / 5}$
$h^{-1}(x)=? \quad=x^{5 / 4}$
4. $k(x)=x^{5} \quad k^{-1}(x)=?=x^{1 / 5}=\sqrt[5]{x}$
