Math-1050 Session \#19

Composite Functions

Compositions of Functions $\quad \mathrm{f}(\mathrm{x})=2 \mathrm{x} \quad \rightarrow \mathrm{f}(3)=$?
Means: "replace ' x ' in the function with a 3.

1. Replace the ' x ' with a set of parentheses.

$$
f(3)=2()
$$

2. Put the input value ' 3 ' into the parentheses.

$$
f(3)=2(3)
$$

3. Find the output value.

$$
f(3)=6
$$

Function Notation

$$
\begin{aligned}
& f(x)=2 x+1 \\
& f(x-1)=2 x-1 \\
& f(3 x)=6 x+1
\end{aligned}
$$

If your input is an expression instead of a number: replace ' x ' with parentheses and "plug in" the expression
\rightarrow parentheses, substitute, simplify

Composition of Functions

$$
\begin{array}{ccc}
f(x)=2 x+1 & g(x)=3 x+2 & h(x)=x+5 \\
f(g(x))=? & =2(\quad)+1=2(3 x+2)+1 \\
h(g(x))=? & =(\quad)+5=(3 x+2)+5 \\
h(f(x))=? & =(\quad)+5=(2 x+1)+5 \\
g(h(x))=? & =3(&)+2=3(x+5)+2 \\
f(f(x))=? & =2(\quad)+1=2(2 x+1)+1
\end{array}
$$

New Notation for the Composition of Functions

$$
\begin{gathered}
(f \circ g)(x)=f(g(x)) \quad \text { " } g \text { " plugged into rule "f" } \\
f(x)=4 x-1 \quad g(x)=-5 x+3 \\
(f \circ g)(x)=? \quad=4(\quad)-1 \quad=4(-5 x+3)-1
\end{gathered}
$$

" g " plugged into rule " f " $(f \circ g)(x)=-20 x+11$ $(g \circ f)(x)=? \quad=-5(\quad)+3 \quad=-5(4 x-1)+3$
" f " plugged into rule " g " $\quad(g \circ f)(x)=-20 x+8$
$(f \circ f)(x)=? \quad=4(\quad)-1 \quad=4(4 x-1)-1$
" f " plugged into rule " f "

$$
(f \circ f)(x)=16 x-5
$$

$$
(g \circ g)(x)=? \quad=-5(\quad)+3 \quad=-5(-5 x+3)+3
$$

" g " plugged into rule " g "
$(g \circ g)(x)=25 x-12$

One more layer!
$f(x)=3 x \quad g(x)=x^{2}$
$f(g(4))$

$f(g(x))=3(g(x))=3 x^{2}$
$f(g(4))=3(g(4))=3(4)^{2}=48$

One more layer. $\quad g(x)=x^{2} \quad f(x)=3 x$

$$
\begin{array}{cl}
(g \circ f)(-1)=? & \text { Rewrite in "old" notation } \\
g(f(-1))=? & \text { The input to } \mathrm{f}(\mathrm{x}) \text { is }-1 . \\
f(-1)=3(-1) & \\
f(-1)=-3 & \text { The output of } \mathrm{f}(-1) \text { is }-3 . \\
g(-3)=9 & \text { The input to } \mathrm{g}(\mathrm{x}) \text { is }-3 . \\
g(f(-1))=9 &
\end{array}
$$

Showing that two composite functions are equal. $f \circ g=g \circ f$

$$
\begin{array}{cl}
f(x)=3 x-2 & g(x)=\frac{x+2}{3} \\
f \circ g=f\left(\frac{x+2}{3}\right) & g \circ f=g(3 x-2) \\
f\left(\frac{x+2}{3}\right)=3\left(\frac{x+2}{3}\right)-2 & g(3 x-2)=\frac{(3 x-2)+2}{3} \\
f\left(\frac{x+2}{3}\right)=\mathrm{x} & g(3 x-2)=x
\end{array}
$$

Therefore: $f \circ g=g \circ f$ so the compositions are equal.
This prepares us for 6.2 (Proving that functions are inverses of each other).

The domain of function compositions
Another way to write a composition. $\quad f \circ g=f(g(x))$

The domain of $f \circ g$ are the input values to $g(x)$
The output of $g(x)$ is the input to $f(x)$
The output of $\mathrm{f}(\mathrm{x})$ is the range of $f \circ g$
Input to ' g ' must result in output values that are allowed as input values to ' f '. Sometimes we have to restrict the domain of ' g ' to make this work.

The domain of function compositions

$$
\begin{aligned}
& f(x)=\sqrt{x} \quad g(x)=x^{2}-1 \\
& f \circ g=?=\sqrt{(\quad)}=\sqrt{\left(x^{2}-1\right)}
\end{aligned}
$$

The domain of ' f ': $x \geq 0$
The input to ' f ' is the output of ' g '.
How must the domain of ' g ' (input values) be restricted so that the output of the ' g ' is: $y \geq 0$

Domain of ' g ' must be restricted to

$$
x \geq 1 \text { and } \quad x \leq-1
$$

The domain of function compositions

$$
\left.f(x)=\frac{3}{x-2} \quad g(x)=\frac{2}{x+5} \quad \text { Domain } g(x)\right): x \neq-5
$$

The output of ' g ' is the input to ' f '
The input to ' f ' cannot equal 2 (causes division by 0 in ' f ').
The output of ' g ' cannot equal 2

$$
\begin{aligned}
& 2 \neq \frac{2}{x+5} \\
& 2(x+5) \neq 2 \\
& 2 x+10 \neq 2 \\
& 2 x \neq-8 \\
& x \neq-4
\end{aligned}
$$

$$
\text { Domain } f(g(x)): x \neq-4, x \neq-5
$$

The domain of function compositions

$$
\begin{aligned}
& f(x)=\frac{3}{x-2} \quad g(x)=\frac{2}{x+5} \\
& f \circ g \quad f\left(\frac{2}{x+5}\right)=\frac{3}{\frac{2}{x+5}-2}=\frac{3}{\frac{2}{x+5}-\frac{2(x+5)}{x+5}}
\end{aligned}
$$

$$
=\frac{3}{\frac{2-2 x-10}{x+5}}=\frac{3}{\frac{-2 x-8}{x+5}}=\frac{3(x+5)}{-2 x-8}=\frac{3(x+5)}{-2(x+4)}
$$

Domain $g(x): x \neq-5$

Domain $f(g(x)):\{x: x \neq-5, x \neq-8\}$
Domain $f(g(x)): x \neq-4$

