Math-1050

Session \#16

Real Zeroes of Polynomial Functions

$$
f(x)=x^{3}-4 x^{2}-15 x+18
$$

This isn't one of the "nice" $3^{\text {rd }}$ degree polynomials:
a) Sum of two cubes: $y=x^{3}+27$
b) Difference of two cubes: $y=8 x^{3}-125$
c) $3^{\text {rd }}$ degree with no "constant" term.

$$
y=x^{3}-4 x^{2}-12 x
$$

d) "nice" pattern that can be factored by grouping (or box):

$$
y=x^{3}+3 x^{2}+3 x+1
$$

We are left with "guessing" the first degree polynomial that divides it evenly!

What are the zeroes?

$$
0=(2 x-5)(3 x+7) \quad x=\frac{5}{2}, \frac{-7}{3}
$$

Multiply the two binomials (convert to standard form)

$$
0=6 x^{2}-x-35
$$

What do you notice about the first and last terms and the zeroes?

What are the zeroes? $\quad 0=(x-3)(2 x+1)(x-4)$

$$
x=3, \quad \frac{-1}{2}, \quad 4
$$

Multiply the three binomials (convert to standard form)

$$
0=2 x^{3}-13 x^{2}+17 x+12
$$

What do you notice about the first and last terms and the zeroes?

$$
\begin{gathered}
0=2 x^{3}-13 x^{2}+17 x+12 \\
x=3, \quad \frac{-1}{2}, \quad 4
\end{gathered}
$$

$$
\oplus \frac{1,2,3,4,6,12}{1,2} \oplus \frac{1,2,3,4,6,12}{1,2} \oplus \frac{1,2,3,4,6,12}{(1,2}
$$

The Rational Zeroes Theorem: the possible rational zeroes of a polynomial are factors of the constant divided by factors of the lead coefficient. $0=6 x^{2}-x-35$

$$
\begin{gathered}
x= \pm \frac{1,5,7,35}{1,2,3,6} \quad x=\frac{5}{2}, \frac{-7}{3} \\
x= \pm 1,5,7,35, \frac{1}{2}, \frac{1}{3}, \frac{1}{6}, \frac{5}{2}, \frac{7}{2}, \frac{7}{3}, . ., \frac{35}{3}, \frac{35}{6}
\end{gathered}
$$

What are the "possible" rational zeroes of the following polynomial?

$$
y=x^{3}-4 x^{2}-15 x+18
$$

$$
x= \pm \frac{1,2,3,6,9,18}{1} \quad x= \pm 1 \pm 2, \pm 3, \pm 6, \pm 9, \pm 18
$$

If $x=1$ is a "zero", what factor did $x=1$ come from?

$$
(x-1)
$$

If $(x-1)$ is a factor, then the $3^{\text {rd }}$ degree factors as:

$$
y=(x-1)\left(a x^{2}+b x+c\right)
$$

Does $(x-1)$ divide the polynomial evenly?

$$
x^{3}-4 x^{2}-15 x+18=(x-1)\left(a x^{2}+b x+c\right)
$$

Divide left/right sides by $(x-1)$

$$
\begin{aligned}
& \frac{x^{3}-4 x^{2}-15 x+18}{(x-1)}=\frac{(x-1)\left(a x^{2}+b x+c\right)}{(x-1)} \\
& \frac{x^{3}-4 x^{2}-15 x+18}{(x-1)}=a x^{2}+b x+c
\end{aligned}
$$

Steps in finding the zeroes of a polynomial (particularly one that is not easily factored).

$$
y=x^{5}-5 x^{4}+12 x^{3}-24 x^{2}+32 x-16
$$

1. Determine the possible rational zeroes. $\quad x= \pm \frac{1,2,4,8,16}{1}$
2. Check each possible zero until the you find the first one that results in a remainder of zero.

$$
\begin{gathered}
1 \begin{array}{cccccc}
1 & -5 & 12 & -24 & 32 & -16 \\
& 1 & -4 & 8 & -16 & 16 \\
\hline 1 & -4 & 8 & -16 & 16 & 0 \\
y & =(x-1)\left(x^{4}-4 x^{3}+8 x^{2}-16 x+16\right) \\
y
\end{array} .
\end{gathered}
$$

3. Same possible zeroes

$$
x= \pm \frac{1,2,4,8,16}{1}
$$

4. Find the next zero.
$1 \longdiv { 1 } \quad - 5 \quad 1 2 \quad - 2 4 \quad 3 2 \quad - 1 6$

1 | 1 | -4 | 8 | -16 |
| :---: | :---: | :---: | :---: |
| 16 | | | |
| | 1 | -3 | 5 |
| 1 | -11 | | |
| 1 | -3 | 5 | -11 |
| | | 5 | |

' 1 ' is not a repeat zero $\rightarrow \mathrm{x}=1$ (multiplicity 1)

$$
y=(x-1)\left(x^{4}-4 x^{3}+8 x^{2}-16 x+16\right)
$$

' 1 ' is not a repeat zero $\rightarrow x=1$ (multiplicity 1)
5. Same possible zeroes $\quad x= \pm \frac{1,2,4,8,16}{1}$

6 . Find the next zero.

1 | 1 | -5 | 12 | -24 | 32 | -16 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | 1 | -4 | 8 | -16 | 16 |
| 1 | -4 | 8 | -16 | 16 | 0 |
| | 0 | | | | |
| 1 | -4 | 8 | -16 | 16 | |
| | 2 | -4 | 8 | -16 | |
| 1 | -2 | 4 | -8 | 0 | |
| $y=$ | $(x-1)(x-2)\left(x^{3}-2 x^{2}+4 x-8\right)$ | | | | |

$$
y=(x-1)(x-2)\left(x^{3}-2 x^{2}+4 x-8\right)
$$

7. Try "box factoring" of the $3^{\text {rd }}-$ degree polynomial factor or continue trying synthetic division.

	x	-2
x^{2}	x^{3}	$-2 x^{2}$
4	$4 x$	-8

$$
y=(x-1)(x-2)\left(x^{2}+4\right)(x-2)
$$

8. List the zeroes.
$x=1,2 i,-2 i, 2$ (multiplicity 2)

Descarte's Rule of Signs: The number of positive zeroes is the number of sign changes in between the coefficients of $f(x)$ or is an even integer less than the number of sign changes.

$$
f(x)=\underbrace{x^{5}}_{\begin{array}{c}
1 \text { sign } \\
\text { change }
\end{array}}-\underbrace{5 x^{4}}_{\begin{array}{c}
\text { sign } \\
\text { change }
\end{array}}+12 x^{3}+\underbrace{24 x^{2}}_{\begin{array}{c}
1 \text { sign } \\
\text { change }
\end{array}}-\underbrace{32 x}_{\begin{array}{c}
\text { sign } \\
\text { change }
\end{array}}+16
$$

$\rightarrow 4$ sign changes
\rightarrow The number of positive zeroes is: 4 or 2

Descarte's Rule of Signs: The number of negative zeroes is the number of sign changes of between the coefficients of $f(-x)$ or is an even integer less than the number of sign changes.

$$
\begin{gathered}
f(x)=x^{5}-5 x^{4}+12 x^{3}+24 x^{2}+32 x-16 \\
f(-x)=(-x)^{5}-5(-x)^{4}+12(-x)^{3}+24(-x)^{2}+32(-x)-16 \\
f(-x)=-x^{5}-5 x^{4}-\underbrace{f}_{\begin{array}{c}
1 \text { sign } \\
\text { change }
\end{array} 12 x^{3}}+\underbrace{24 x^{2}}_{\begin{array}{c}
1 \text { sign } \\
\text { change }
\end{array}}-32 x-16
\end{gathered}
$$

$\rightarrow 2$ sign changes
\rightarrow The number of negative zeroes is : 2 or 0

