Math-1050

Session \#11
(Textbook 5.1: Polynomials)

The Cube Function
$f(x)=x^{3}$

x	y
-2	-8
-1	-1
0	0
1	1
2	8

$2 f(x+2)-2$

$$
f(x)=x^{3}
$$

Inflection Point: the point where the shape of the graph changes from "concave down" (curving downward) to "concave up" (curving upward) or vice versa.

Inflection point: $(0,0)$
Shape of the graph: Not vertically stretched: from the inflection point "right 1, up 1 " And "right 2, up 8"

Polynomial: An equation (or an expression) with same-base powers being added that are raised to a natural number exponent.
Example: $\quad y=8 x^{5}+5 x^{4}+9 x^{3}+x^{2}+2 x+3$
Not a polynomial $y=x^{0.5}+3 x^{2 / 3}+6 \sqrt{x}$

Lead coefficient: the coefficient of the largest power.

$$
y=-8 x^{5}+5 x^{4}+9 x^{3}+x^{2}+2 x+3
$$

Degree: the largest exponent of the polynomial.

Standard Form Polynomial A polynomial ordered so that the exponents get smaller from the left-most term to the rightmost term.

$$
y=\underline{8 x^{5}}+5 x^{4}+\underline{9 x^{3}}+x^{2}+\underline{2 x}+\underline{3}
$$

Term: powers (or the constant) separated by either a '+' or ‘-' symbol.
Number of terms: If all terms are present, a $\underline{2}^{\text {nd }}$ degree polynomial as 3 terms in standard form.

$$
y=2 x^{2}-4 x+5
$$

If you include the number zero as a possible coefficient, an " n-th degree polynomial has $n+1$ terms (i.e., a $3^{\text {rd }}$ degree has 4 terms).

$$
y=4 x^{3}+0 x^{2}-4 x+5
$$

Intercept Form Polynomial A polynomial that has been factored into linear factors, from which you can identify the input values that make the output value equal to zero.

Example: $\quad y=6(x+4)(x+3)(x-2 i)(x+2 i)$

Linear factors: the exponent of the power is a ' 1 '.
Why do we call these linear factors?
$y=m x+b$ Is a linear equation so $(x+2)$ is a linear factor

Fundamental Theorem of Algebra: If a polynomial has a degree of "n", then the polynomial has "n" zeroes (provided that repeat zeroes, called "multiplicities" are counted separately).

$$
\begin{aligned}
& y=6 x^{4}+42 x^{3}+96 x^{2}+28 x+48 \\
& " 4^{\text {th }} \text { Degree" } \rightarrow 4 \text { zeroes } \quad x=-4,-3,2 i,-2 i
\end{aligned}
$$

Linear Factorization Theorem: If a polynomial has a degree of " n ", then the polynomial can be factored into " n " linear factors.

$$
y=6(x+4)(x+3)(x-2 i)(x+2 i)
$$

Since each linear factor has one zero, these two theorems are almost saying the same thing.

Zeroes of Polynomials: come from linear factors.

$$
\begin{aligned}
& y=6 x^{4}+42 x^{3}+96 x^{2}+28 x+48 \\
& 0=6(x+4)(x+3)(x-2 i)(x+2 i) \\
& \quad x=-4 \quad x=-3 \quad x=2 i \quad x=-2 i
\end{aligned}
$$

If the polynomial is already in intercept form: just find the zeroes.

$$
\begin{aligned}
& 0=(x+5)(x-2)(x-\sqrt{3})(x+\sqrt{3}) \\
& \quad x=-5 \quad x=2 \quad x=\sqrt{3} \quad x=-\sqrt{3}
\end{aligned}
$$

Given the zeroes, write the equation of the Polynomial:

$$
\begin{gathered}
x=-2 \quad x=3 \quad x=6 \\
y=(x+2)(x-3)(x-6)
\end{gathered}
$$

Polynomial: An equation (or an expression) with same-base powers being added that are raised to a non-negative integer exponents. \rightarrow Convert to "standard form."

$$
\begin{aligned}
& y=a(x+2)(x-3)(x-6) \quad \rightarrow \text { Assume VSF }=1 \\
& y=(x+2)\left(x^{2}-9 x+18\right) \\
& \begin{array}{|c|c|c|c|}
\hline & x^{2} & -9 x & 18 \\
\hline x & x^{3} & -9 x^{2} & 18 x \\
\hline 2 & 2 x^{2} & -18 x & 36 \\
\hline
\end{array} \quad \begin{array}{l}
y=x^{3}-7 x^{2}+36 \\
\hline
\end{array}
\end{aligned}
$$

What is the pattern between degree and end behavior?

$$
y=x
$$

\downarrow left \uparrow right

$$
y=x^{2}
$$

\uparrow left \uparrow right

$$
y=x^{3}
$$

\downarrow left \uparrow right

Odd degree: $\quad \downarrow$ left \uparrow right even degree \uparrow left \uparrow right
What is the pattern between degree and \#turns?
An (n-degree) polynomial turns $(n-1$) times.

Degree vs. End Behavior

$$
y=x^{5}+x^{4}+x^{3}+x^{2}+x+1
$$

Pick a very large input value: $1,000,000=10^{\wedge} 6$ then compare each term.
$\left(10^{6}\right)^{5}=10^{30}$
$\left(10^{6}\right)^{4}=10^{24}$
$\left(10^{6}\right)^{3}=10^{18}$
$\left(10^{6}\right)^{2}=10^{12}$
$\left(10^{6}=10^{6}\right.$
$1=10^{\circ}$
The term with the largest exponent dominates the output of the function.

Max number of x-intercepts?

$$
y=x^{4}-4 x^{2}+1
$$

$$
y=x^{5}-x^{4}-4 x^{2}+1
$$

The degree of the polynomial equals the number of zeroes AND gives you the max number of x-intercepts (real number zeroes).

Lead Coefficient \& Degree \rightarrow End Behavior?

$$
y=x^{5}-x^{4}-4 x^{2}+1
$$

$$
y=-x^{5}-x^{4}-4 x^{2}+1
$$

All odd degree polynomials have the same end behavior!
negative lead coefficient: reflection across the x-axis, all negative-odd polynomials have the same end behavior!
$4^{\text {th }}$ Degree Polynomial (even degree)

$$
y=(2 x+8)(3 x+6)(x-1)(x-3)
$$

"left * left * left * left" = ? $=6 x^{4}$

$$
y=6 x^{4}+\ldots(\text { other terms })
$$

Fundamental Theorem of Algebra: If the polynomial has degree ' n ', then polynomial has ' n ' number of "zeroes" (provided that we count "repeated" x-intercepts separately)
$2^{\text {nd }}$ degree polynomial \rightarrow "two zeroes"

$$
y=(x-1)^{2}=(x-1)(x-1)
$$

$x=1$ is a "zero" of the polynomial twice.
We say that $x=1$ is a zero of the polynomial with multiplicity 2
Multiplicity: the number of times a zero is repeated for a polynomial.

How can you tell if there are zeroes that are multiplicities?

$$
y=3(x-2)^{3}(x+4)^{2}(x-\sqrt{5})(x+\sqrt{5})(x-3 i)(x+3 i)
$$

Zeroes: $x=2$ (multiplicity 3), -4 (mult. 2), etc.
What is the degree of this polynomial?
$\left(3^{\text {rd }}\right.$ degree $\left.)\right)^{*}\left(2^{\text {nd }} \text { degree }\right)^{*}\left(1^{\text {stt }}\right)\left(1^{\text {stt }}\right)\left(1^{\text {stt }}\right)\left(1^{\text {stt }}\right)=9^{\text {th }}$ degree
Multiply powers property of exponents!!!

Complex Conjugates Theorem

If $f(x)$ is a function with real coefficients and if ($a+b i$) is a zero of $f(x)$, then its complex conjugate ($a-b i$ is also a zero of $f(x)$.

Example: $\quad x=2 i, x=-2 i$
Example: $\quad x=3-2 i, x=3+2 i$

Irrational Roots Theorem

If $f(x)$ is a function with real coefficients and if $a-\sqrt{b}$
is a zero of $f(x)$, then its irrational conjugate
$a+\sqrt{b}$
is also a zero of $f(x)$.
Example: $\sqrt{3},-\sqrt{3}$
Example: $4-\sqrt{2}, 4+\sqrt{2}$

Describe the end behavior

$$
f(x)=2 x^{4}-7 x^{3}-8 x^{2}+14 x+8
$$

Positive lead coefficient, even degree
Up on left/right

$$
f(x)=-7 x^{3}-8 x^{2}+14 x+8
$$

negative lead coefficient, odd degree
Up on left, down on right

How many real zeroes will the polynomial have?
Does an even degree polynomial necessarily cross the x-axis? Does an odd degree polynomial necessarily cross the x-axis?

Make a table of the possible zeroes by category

Degree	Real zeroes	Imaginary Zeroes
2	2	0
	0	2

Make a table of the possible zeroes by category

Degree	Real zeroes	Imaginary Zeroes
Not possible		
	0	3
	1	2
	2	1
	3	0

The General Shape of the Graph of a Polynomial

$$
f(x)=(x-2)(x-3)(x+4)
$$

zeroes: $\mathrm{x}=2,3$, and -4 .
All are real numbers. All are $\underline{x \text {-intercepts. }}$ positive lead coefficient and an odd degree.

The end behavior is Up on right, down on left ?

$$
\begin{aligned}
& f(x)=x(x+1)(x-1)(x-2) \\
& \text { zeroes: } \mathrm{x}=0,-1,1, \text { and } 2 .
\end{aligned}
$$

All are real numbers. All are $\underline{x \text {-intercepts. }}$ positive lead coefficient and an even degree.

The end behavior is Up on right, up on left ?

$$
f(x)=(x+1)^{2}(x+3)(x-4)
$$

zeroes: $x=-1,-1 .-3$, and 4.
All are real numbers.
All are x -intercepts. positive lead coefficient and an even degree.

The end behavior is Up on right, up on left Why doesn't the "end behavior" line up?

$$
f(x)=(x+1)^{2}(x+3)(x-4)
$$

It has the following zeroes: $x=-1,-1,-3$, and 4 . The zero with an EVEN "multiplicity will 2 just "kiss" the x-axis. Remember $y=x^{2}$?

$$
f(x)=(x+2 i)(x-2 i)(x-4)^{2}(x+2)
$$

It has the following zeroes: $\mathrm{x}=2 \mathrm{i},-2 \mathrm{i}, 4,4$. and -2 .
Only 4 and -2 are real numbers. These are x-intercepts. positive lead coefficient and an odd degree.
The end behavior is Up on right, down on left ?
The graph "kisses" at $\mathrm{x}=4$

How does the graph "behave" near the zero: $x=1$

$$
f(x)=x(x+1)(x-1)(x-2)
$$

Substitute $x=1$ into every linear factor except the one causing the zero of the function.

$$
\begin{gathered}
f(x)=1(1+1)(x-1)(1-2) \\
f(x)=1(2)(x-1)(-1) \\
f(x)=-2(x-1) \quad f(x)=-2 x+2
\end{gathered}
$$

$$
f(x)=(x+1)^{2}(x+3)(x-4)
$$

How does the graph "behave" near the zero: $\mathrm{x}=-1$
Substitute $x=-1$ into every linear factor except the one causing the zero of the function.

$$
\begin{aligned}
& f(x)=(x+1)^{2}(-1+3)(-1-4) \\
& f(x)=(x+1)^{2}(2)(-5) \\
& f(x)=-10(x+1)^{2} \quad \begin{array}{c}
\text { Downward opening parabola } \\
\text { with vertex at }(0,-1)
\end{array}
\end{aligned}
$$

