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Rational Exponents
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𝑥13 We can simplify this in two ways
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We can write radical as powers!!
4
𝑥13 → 𝑥 ൗ13
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Are radicals related to powers?
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Applying the property of equality, 

I can take the “1/3” power of each side.
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Another way to think about it.
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Factor 9 Take ½ of each pair of factors
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3 8

Nth Root of 5 = ?: n 5

3rd Root of 8 = ?:

Index number



Your turn:

Write the following in “radical form”

5th Root of 18 

4th Root of 25

What type of number does 5th sound like?
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Corresponding Parts of the 2 forms

34 x
Radicand

Index
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Coefficient

Base

Exponent
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Radicand

Index

Coefficient

Base

Denominator of the Exponent

Coefficient

The index number is the denominator of the exponent.



Writing Radicals in
“Exponent Form”

3 7

Index # (of radical):  same as the denominator  of an exponent.
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None of these have coefficients!



3 75

Index # (of radical):  same as the denominator  of an exponent.
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Where did the coefficient of the radical end up when re-

written in “power form”? A Coefficient remains a coefficient.

Notice that there was only a single term as the radicand.
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rewrite in “exponent form”
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rewrite in “radical form”
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What happens if there is a product under the radical?
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4 212 mn

How did we show that the index number applied to the entire product 

(radicand) when re-written in “power form”?

Power of a product → product inside parentheses with an exponent.



3 236 m

What happens if there is a power under the radical?
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How did we show that the index number applied to the entire product 

(including the power) when re-written in “power form”?

Power of a product → product inside parentheses with an exponent.
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2 5x→

3 22

The exponent can be written as a rational number. 
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Numerator: 

Exponent of the base.
Denominator: 

Root of the base.

Radical Form Exponential Form

“Exponential Form” that has both a numerator and denominator



What form should you use? Usually, the problem will tell you.

rewrite in “radical form”
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rewrite in “exponent form”
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Product of Powers Property

When multiplying “same based powers” add the exponents.

32 * yy 32+→ y
5y→
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Exponent of a Power Property

When multiplying “same based powers” add the exponents.
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Negative Exponent Property
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We don’t want negative exponents in our answers
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Rational Exponents in the Denominator Rational exponent in the denominator means 

irrational denominator, which we rationalize
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