# Math-1010 

Lesson 2-6

Rational Exponents
$\sqrt[4]{x^{13}}$
We can simplify this in two ways

2. $\sqrt[4]{x^{12} * x^{1}} \rightarrow x^{12 / 4} * \sqrt[4]{x} \rightarrow x \sqrt[4]{x}$

We can write radical as powers!! $\sqrt[4]{x^{13}} \rightarrow x^{13 / 4}$

Are radicals related to powers?
$x=\sqrt[3]{5}$
Applying the property of equality,
$x^{3}=5$
I can take the " $1 / 3$ " power of each side.
$\left(x^{3}\right)^{1 / 3}=5^{1 / 3}$
$x=5^{1 / 3}$

$$
5^{1 / 3}=\sqrt[3]{5}
$$

Another way to think about it.

$$
9^{1 / 2} \rightarrow(3 * 3)^{1 / 2} \quad \rightarrow 3
$$

Factor 9 Take $1 / 2$ of each pair of factors
$27^{1 / 2} \rightarrow(3 * 3 * 3)^{1 / 2} \rightarrow 3(3)^{1 / 2}$

$\mathrm{N}^{\text {th }}$ Root of $5=?: \quad \sqrt[n]{5}$

## Your turn:

Write the following in "radical form"

$$
\begin{aligned}
5^{\text {th }} \text { Root of } 18 & =\sqrt[5]{18} \\
4^{\text {th }} \text { Root of } 25 & =\sqrt[4]{25}
\end{aligned}
$$

What type of number does $5^{\text {th }}$ sound like?

$$
1 / 5
$$

Corresponding Parts of the 2 forms


Coefficient $\longrightarrow$ Coefficient
Radicand $\longrightarrow$ Base
Index $\longrightarrow$ Denominator of the Exponent The index number is the denominator of the exponent.

## Writing Radicals in

 "Exponent Form"Index \# (of radical): same as the denominator of an exponent.

$$
\begin{aligned}
& \sqrt[2]{x}=x^{1 / 2} \\
& \sqrt[3]{7}=7^{1 / 3}
\end{aligned}
$$

None of these have coefficients!

Index \# (of radical): same as the denominator of an exponent.

$$
\begin{aligned}
& 3 \sqrt[2]{y}=3 y^{1 / 2} \\
& 5 \sqrt[3]{7}=5(7)^{1 / 3} \\
& 2 \sqrt[4]{5}=2(5)^{1 / 4}
\end{aligned}
$$

Where did the coefficient of the radical end up when rewritten in "power form"? A Coefficient remains a coefficient.

Notice that there was only a single term as the radicand.
rewrite in "exponent form"

$$
\begin{aligned}
\sqrt[5]{w} & \rightarrow w^{1 / 5} \\
2 x^{3} \sqrt{10} & \rightarrow 2 x(10)^{1 / 3} \\
3 \sqrt[4]{11} & \rightarrow 3(11)^{1 / 4}
\end{aligned}
$$

rewrite in "radical form"

$$
\begin{aligned}
x^{1 / 4} & \rightarrow \sqrt[4]{x} \\
2(32)^{1 / 6} & \rightarrow 2 \sqrt[6]{32} \\
2\left(x y^{3}\right)^{1 / 3} & \rightarrow 2 y \sqrt[3]{x}
\end{aligned}
$$

What happens if there is a product under the radical?

$$
\begin{aligned}
& \sqrt[2]{x y}=(x y)^{1 / 2} \\
& 5 \sqrt[3]{3 x}=5(3 x)^{1 / 3} \\
& 2 \sqrt[4]{21 m n}=2(21 m n)^{1 / 4}
\end{aligned}
$$

How did we show that the index number applied to the entire product (radicand) when re-written in "power form"?

Power of a product $\rightarrow$ product inside parentheses with an exponent.

What happens if there is a power under the radical?

$$
\begin{aligned}
& \sqrt[5]{x^{2} y}=\left(x^{2} y\right)^{1 / 5}=x^{2 / 5} y^{1 / 5} \\
& 6 \sqrt[3]{3 m^{2}}=6\left(3 m^{2}\right)^{1 / 3}=6\left(3^{1 / 3}\right) m^{2 / 3}
\end{aligned}
$$

How did we show that the index number applied to the entire product (including the power) when re-written in "power form"?

Power of a product $\rightarrow$ product inside parentheses with an exponent.
"Exponential Form" that has both a numerator and denominator
The exponent can be written as a rational number.


Numerator:
Exponent of the base.

## $\sqrt[3]{2^{2}}$ <br> Radical Form



Denominator: Root of the base.
$\rightarrow 2^{2 / 3}$
Exponential Form

What form should you use? Usually, the problem will tell you.
rewrite in "radical form"

$$
\begin{array}{rl}
5(y)^{2 / 3} & \rightarrow 5 \sqrt[3]{y^{2}} \\
& 2 \sqrt[5]{x^{3} y^{2}} \\
y^{2} & * y^{3} \rightarrow y^{2+3} \rightarrow y^{5}
\end{array}
$$

When multiplying "same based powers" add the exponents.

$$
x^{2 / 3} x^{3 / 4} \rightarrow x^{\frac{2}{3}+\frac{3}{4}} \rightarrow x^{\left(\frac{2}{3} * \frac{4}{4}\right)+\left(\frac{3}{4} * \frac{3}{3}\right)} \rightarrow x^{\frac{8}{12}+\frac{9}{12}} \rightarrow x^{\frac{17}{12}}
$$

## Exponent of a Power Property

When multiplying "same based powers" add the exponents.

$$
\left(y^{2}\right)^{3} \rightarrow y^{2 * 3} \rightarrow y^{6}
$$

$$
\begin{aligned}
& \left(y^{1 / 2}\right)^{2 / 3} \rightarrow y^{\frac{1}{2} * \frac{2}{3}} \rightarrow y^{\frac{2}{6}} \\
& \left(\frac{x^{2}}{y^{3 / 2}}\right)^{2 / 3} \rightarrow \frac{x^{\frac{2}{1} * \frac{2}{3}}}{y^{\frac{3}{2} * \frac{2}{3}}} \rightarrow \frac{x^{\frac{4}{3}}}{y^{1}}
\end{aligned}
$$

$$
\rightarrow y^{\frac{1}{3}}
$$

$$
\frac{x^{2} y^{2 / 3}}{y^{-1 / 2}} \rightarrow x^{2} y^{2 / 3} y^{1 / 2} \rightarrow x^{2} y^{\frac{2}{3}+\frac{1}{2}} \rightarrow x^{2} y^{\frac{4}{6}+\frac{3}{6}} \rightarrow x^{2} y^{\frac{7}{6}}
$$

Rational Exponents in the Denominator

$$
\begin{aligned}
\frac{1}{y^{1 / 2}} \rightarrow \frac{1}{\sqrt{y}} * \frac{\sqrt{y}}{\sqrt{y}} \rightarrow \frac{\sqrt{y}}{y} \\
\frac{1}{y^{1 / 2}} * \frac{y^{1 / 2}}{y^{1 / 2}} \rightarrow \frac{y^{1 / 2}}{y}
\end{aligned}
$$

Rational exponent in the denominator means irrational denominator, which we rationalize

