College Algebra Math 1050 Sample Midterm Exam Version 2 - *Rubric*

1. $\pm \frac{1}{3}, \pm 1, \pm \frac{2}{3}, \pm 2$	(3 pts)	all or nothing
2. $x = \frac{1}{3}$	(3 pts)	all or nothing
3. $x = \sqrt{5}, x = -\sqrt{5}$	(3 pts)	all or nothing
4. $x = 3i + 2$ OR $x = 2 + 3i$	(3 pts)	all or nothing
5. $(f+g)(2) = 8$	(3 pts)	all or nothing
6. $x = 1, x = 3$	(3 pts)	all or nothing
7. $(-\infty, -4) \cup (4, \infty)$	$(2 \mathrm{pts})$	all or nothing
8. $D(f-g) = \{x x \neq 2, x \ge 1\}$	(4 pts)	all or nothing
any correct form of the answer is acceptable		
9. $\frac{\left[\left(x+h\right)^2 - 3\left(x+h\right) + 1\right] - \left[x^2 - 3x + 1\right]}{h}$	(4 pts)	all or nothing
10. (a) $\left(\frac{\sqrt{x+h}-\sqrt{x}}{h}\right) \left(\frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}}\right)$	(4 pts)	all or nothing
11. $x \neq -3, x \neq -2$	(1 pt)	all or nothing
any correct form of the answer is acceptable		
12. $\left(-\frac{3}{2},0\right)$ answer must be written as an ordered pair	(1 pt)	all or nothing
13. $\left(0, \frac{1}{2}\right)$ answer must be written as an ordered pair	$(1 ext{ pt})$	all or nothing
14. $x = -3$ answer must be written as an equation	(2 pts)	all or nothing
15. $y = x - 2$ answer must be written as an equation	$(2 \mathrm{pts})$	all or nothing
16. $(-4,0), (2,0), (3,0)$ answer must be written as an ordered pair	(3 pts)	all or nothing
17. (c)	(3 pts)	all or nothing
18. 2 seconds (unit not necessary)	(4 pts)	all or nothing.
19. (c) $\frac{1}{x+1} - \frac{2}{x-3} < 0$	(3 pts)	all or nothing
20. $(-\infty, -2) \cup [1, 3]$	(3 pts)	all or nothing
21. (c) $ x-1 \ge 5$	(4 pts)	all or nothing

22.
$$\left(-\frac{1}{2},0\right)\cup(1,\infty)$$

(8 pts) For correct answer with supporting work. All brackets must be correct

If the answer is NOT correct:

- (2 pts) For choosing the correct denominator to simplfy
- (3 pts) For correct expression compared to zero

OR

- (3 pts) For listing the correct restrictions on the domain
- (2 pts) For correct expression compared to zero

(9 pts) If the graph is sketched perfectly

If the graph is NOT sketched correctly:

(3 pts) For all of the following:

- Graph is sketched over the entirety of the domain
- Correct number of vertical asymptotes are present on the graph
- Correct type of non-vertical asymptote is present on the graph
- Graph clearly demonstrates knowledge of asymptotic behavior

THEN

(2 pts) For all of the following:

- Correct x and y intercepts are present on the graph
- No extraneous intercepts are present on the graph

24. $(-\infty, -5) \cup (9, \infty)$

(8 pts) For correct answer with supporting work. All brackets must be correct

If the answer is NOT correct:

(4 pts) For writing two correct inequalities

\mathbf{OR}

(4 pts) For writing two correct equalities

25. h(500) = 250,000 dollars

(8 pts) For either:

giving the correct numerical answer with supporting work

OR

an explanation that demonstrates full understanding of the procedure for finding the answer, either by finding the x coordinate of the vertex with $\frac{-b}{2a}$ and substituting that value into the function or by completing the square

If the answer is NOT correct:

(3 pts) For correctly setting up the quadratic equation: R = x(1000 - x)

(8 pts) If graph is sketched appropriately.

Note: an appropriate graph will demonstrate the following: -graph is continuous -graph is smooth, without sharp points -graph has correct end behavior -graph has correct behavior at all zeros

If the answer is NOT correct:

(4 pts) For all of the following:

-graph is continuous
-graph is smooth, without sharp points
-graph has correct behavior at all zeros
(i.e. graph appropriately goes through or bounces at the x axis for all zeros)