College Algebra Math 1050

Sample Final Exam 3 - Rubric

1. $\left[\begin{array}{cc}4 & -7 \\ 6 & -13\end{array}\right]$
2. The graph has at most 6 turning points
3. $6,000=2,000\left(1+\frac{0.065}{4}\right)^{4 t}$ OR $3=\left(1+\frac{0.065}{4}\right)^{4 t}$
4. $a^{5}=3$
5. $\log _{b} x=\frac{8}{3}$
6. $x \neq 3, x \neq 4$ Answer can be written in any form.
7. $(-7,0),(1,0)$

Answer must be written as an ordered pair
8. $\left(0,-\frac{7}{12}\right)$ OR $(0,-0.583)$
(3 pts) all or nothing

Answer must be written as an ordered pair
9. $x=-5, x=2$
(3 pts) all or nothing

Answer must be written as an equation
10. $y=2$
(3 pts) all or nothing
Answer must be written as an equation
11. $\frac{33!}{29!4!}(2 a)^{4}(-3)^{29} \quad$ OR $\quad\binom{33}{4}(2 a)^{4}(-3)^{29}$

OR $\binom{33}{29}(2 a)^{4}(-3)^{29}$
(3 pts) all or nothing
12. (c) $\left[\begin{array}{ccc|c}2 & 1 & -1 & 3 \\ -1 & 3 & 2 & 4 \\ 1 & -1 & 1 & 0 \\ 1 & 4 & 2 & 7\end{array}\right]$.
(3 pts) all or nothing
13. $y \neq 2$ OR $x \neq 2$
(3 pts) all or nothing
14. $f^{-1}(2)=-3$
15. (c) $\left(f^{-1}\right)(x)=\sqrt[3]{x-2}$.
16. $(g \circ f)(0)=\mathbf{0}$.
17. (a) $\log _{4} \frac{3 x-1}{x+1}=6$.
18. $y=21$
19. $c_{3}=-22$
20. 9.3 years Unit need not be present
21. (c) $5^{3 x}=3$.
22. $\frac{A}{x}+\frac{B}{x+1}+\frac{C}{(x+1)^{2}}$
23. $x=-8, y=-13$
24. 15
25. (b) $\frac{2}{x+4}-5 \geq 0$

26.
27. (b) $(-\infty, 2] \cup(6, \infty)$, (c) $(-\infty, 2]$ or $(6, \infty)$
28. (a) $(3 x-1)(x+2)>0$.
29. $(f+g)(1)=3$

30(a). ($1, \infty$)
Answer may be written in any form
30(b). $\quad(2,0)$
Answer must be written as an ordered pair
(3 pts) all or nothing
(3 pts) all or nothing (3 pts) all or nothing (3 pts) all or nothing
(3 pts) all or nothing
(3 pts) all or nothing
(3 pts) all or nothing
(3 pts) all or nothing
(4 pts) all or nothing
(4 pts) 2 pts for each correct variable
(4 pts) all or nothing
(3 pts) all or nothing
(3 pts) all or nothing
(2 pts) all or nothing
(4 pts) all or nothing
(4 pts) all or nothing
(2 pts) all or nothing
31. $\mathrm{S}=-4843$
(7 pts) For correct answer with supporting work.
(0 pts) For correct answer with NO supporting work
If the answer is NOT correct:
(4 pts) For calculating n correctly: $n=58$
OR
(3 pts) For using formula to find the sum correctly.
Award these points if n is incorrect, but correctly used to find the sum:

$$
S=\frac{n}{2}\left(a_{1}+a_{n}\right) \quad a_{1}=2, a_{n}=-169
$$

32.

($\mathbf{9} \mathbf{~ p t s)}$ If the graph is sketched perfectly
If the graph is NOT sketched correctly:
(3 pts) For all of the following:

- Graph is sketched over the entirety of the domain
- Correct number of vertical asymptotes are present on the graph
- Correct type of non-vertical asymptote is present on the graph
- Graph clearly demonstrates knowledge of asymptotic behavior

THEN

(2 pts) For all of the following:

- Correct x and y intercepts are present on the graph
- No extraneous intercepts are present on the graph

33. $(-\mathbf{3}, \mathbf{2}, \mathbf{1}) \quad$ OR $\quad x=-3, y=2, z=1$
(7 pts) For correct answer with supporting work.
Either form of the answer is acceptable

If the answer is NOT correct:
(4 pts) For having reduced row eschelon form or row eschelon form on the left side of the matrix
for example: $\left[\begin{array}{lll|l}1 & 0 & 0 & - \\ 0 & 1 & 0 & - \\ 0 & 0 & 1 & -\end{array}\right]$
OR
for example: $\left[\begin{array}{lll|l}1 & - & - & - \\ 0 & 1 & - & - \\ 0 & 0 & 1 & -\end{array}\right]$
specifically, the right side of the matrix is in a correct form and there is reasonable work shown to justify the final (incorrect) answer
34. $x=5$
(7 pts) For correct answer with supporting work.

If the answer is NOT correct:
(4 pts) For getting to the correct quadratic equation using valid logarithmic properties
35.
(7 pts) For correct answer with supporting work.
Here are the answers for various roundings of k :
if $k=\frac{\ln 2}{6} \quad$ then $N(t)=20,318$
if $k=0.11552$ then $N(t)=20,315$
if $k=0.1155 \quad$ then $N(t)=20,298$
if $k=0.116 \quad$ then $N(t)=19,896$
if $k=0.12 \quad$ then $N(t)=24,302$

If the answer is NOT correct:

(4 pts) for correct value of k.

36(a)
far left point $\quad(-1<x-$ value $<0,0.5<y-$ value $<1)$
far right point $\quad(0.5<x-$ value $<1,-0.5<y$-value $<0)$
(1 pt) for each reasonable estimate for the ordered pairs, up to 2 pts

(b) $\left(-\frac{1}{2}, \frac{3}{5}\right)$ and $\left(\frac{3}{4},-\frac{2}{5}\right)$
(5 pts) For correct answer with supporting work.

If the answer is NOT correct:

(2 pts) For valid algebraic substitution as first step. THEN
(2 pts) For correct numeric answer for one variable
37. $f^{-1}(x)=\frac{2 \mathrm{x}+1}{3 \mathrm{x}-1}$
(5 pts) For correct answer with supporting work.

If the answer is NOT correct:

(2 pts) If student cleared the denominator in preparation to solve for appropriate variable.
38. $(-\infty,-6] \cup(1, \infty)$
(8 pts) For correct answer with supporting work.

If the answer is NOT correct:
(3 pts) for choosing correct denominator to simplify equation
(2 pts) for finding the correct expression compared to zero

OR
(3 pts) for indicating the correct restriction(s) on the domain
(2 pts) for finding the correct expression compared to zero

