## College Algebra Math 1050 Practice Final Exam 2

| Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                   |                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| School:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Instructor:                                                                                       |                                                                      |
| The point value of each p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | calculators are allowed. Time line roblem is in the left-hand marginer on problems 1 Work neatly. | n. You must show your work to                                        |
| Fill in the blank or circle the second of t | he correct answer. $ \begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix} =  $                        | _                                                                    |
| 2. (2 points) The solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s of the equation $ x+1  = 3$ are                                                                 |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3000 invested in a bank which of 000 on her account in                                            | ffers 5% interest compounded<br>years. <b>Round your answer to a</b> |
| 4. (3 points) The exponen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ntial form of the logarithmic equa                                                                | ation $\log_3 x = 5$ is                                              |
| 5. (3 points) Let $\log_a x = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\log_a y = 4$ , and $\log_a z = 1 \log_a y =$                                                    | = 4. Then $\log_a \frac{x^2}{z^3 \sqrt{y}}$ is                       |
| Consider a function $f(x) = 6$ . (3 points) The domain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $= \frac{x-4}{x^2-3x+2}$ . of the function $f(x)$ is                                              | ·                                                                    |
| 7. (3 points) The $x$ – interordered pairs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | cept(s) of the function $f(x)$ are _                                                              | Write your answers as                                                |
| 8. (3 points) The <i>y</i> –intercas ordered pairs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\operatorname{sept}(s)$ of the function $f(x)$ are                                               | Write your answers                                                   |

Consider a function  $g(x) = \frac{x^2}{x+1}$ .

- 9. (3 points) The vertical asymptote(s), if any, of the function g(x) is (are) \_\_\_\_\_Write your answer as an equation.
- 10. (3 points) The non-vertical asymptote(s), if any, of the function g(x) is (are) \_\_\_\_\_\_Write your answer as an equation.
- 11. (3 points) The augmented matrix of the system of linear equations  $\begin{cases} x 2y + z = 9 \\ y + z = 0 \end{cases}$  is x + 3z = 2
- 12. (3 points) Calculate  $\begin{pmatrix} 10 \\ 7 \end{pmatrix} = \underline{\qquad}$
- 13. (3 points) The inverse of the function  $f(x) = \frac{2x-1}{x+1}$  is  $f^{-1}(x) = \frac{x+1}{2-x}$ . The range of f is \_\_\_\_\_\_
- 14. (3 points) f is a one-to-one function:  $f = \{(-3,5), (-2,9), (-1,2), (0,11), (2,3)\}$ . Find  $f^{-1}(2)$
- 15. (3 points) Let  $f(x) = x^3$ . Which of the following is(are) the inverse of the function f? Circle your answer(s).
- (a)  $g(x) = \frac{1}{x^3}$
- (b)  $g(x) = x^{1/3}$
- (c)  $g(x) = \sqrt[3]{x}$
- $(\mathsf{d})\,g(x)=x^{-3}$
- 16. (3 points) Given the table

$$x$$
 -3 -2 -1 0 1 2 3

$$f(x)$$
 -7 -5 -3 -1 3 5 7

$$g(x)$$
 8 3 0 -1 0 3 8

evaluate  $(f \circ g)(1)$ .

17. (3 points) Consider the equation  $\log_2(3x-1) - \log_2 x = 1$ .

- (a) Giorgi's first step to solve the equation is:  $\log_2 \frac{3x-1}{x} = 1$ .
- (b) Lado's first step to solve the equation is:  $\log_2(3x 1 x) = 1$ .
- (c) The both are correct steps.
- (d) None is a correct step.

Circle all that apply.

18. (3 points) The graph of the function  $f(x) = -3x^6 + 4x^5 - x^2 + 7$  has at most \_\_\_\_\_ turning points.

- 19. (3 points) Let  $a_1 = 2$  and  $a_n = 1 a_{n-1}$ . Then  $a_3$  is \_\_\_\_\_.
- 20. (3 points) Consider the equation  $40 = 30e^{5x}$ .
- (a) Dato's first step to solve the equation is:  $10 = e^{5x}$ .
- (b) Vaja's first step to solve the equation is:  $\frac{4}{3} = e^{5x}$ .
- (c) Maka's first step to solve the equation is:  $\ln 40 = 5x \ln 30$
- (d) All are correct steps.
- (e) None is a correct step.

Circle all that apply.

21. (3 points) Laticia wants to triple her initial investments of P dollars invested in a bank which offers 7% interest compounded continuously. Set up an equation which enables her to calculate for how long will it take:\_\_\_\_\_\_

22. (4 points) The form of the partial fraction decomposition of the rational function  $f(x) = \frac{x+3}{x^2(x+2)}$  is\_\_\_\_\_

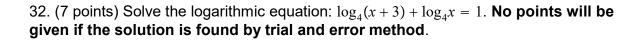
23. (4 points) The matrix  $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ -1 & 0 & -4 & 3 \\ 2 & 2 & 1 & -1 \end{bmatrix}$  is given. Some row operation(s) have been applied to A to obtain  $\begin{bmatrix} 1 & 2 & 3 & 4 \\ -1 & 0 & -4 & 3 \\ 0 & -2 \end{bmatrix}$ . Fill the missing entries.

24. (4 points) The remainder of the division  $\frac{3x^2-x+5}{x-2}$  is \_\_\_\_\_

25. (4 points) Consider the inequality  $\frac{x-1}{x+1} \ge 2$ . Which correctly describes the first step in solving the inequality:

- (a) Levan's first step to solve the inequality is:  $x 1 \ge 2(x + 1)$ .
- (b) Ladi's first step to solve the inequality is:  $\frac{x-1}{x+1} 2 \ge 0$ .

- (c) Both are correct steps.
- (d) None is a correct step. Circle all that apply.
- 26. (4 points) The rational expression  $\frac{x^2+2x-15}{x-1}$  has critical numbers at  $x=-5, \ x=3,$  and x=1. Find the solution of the inequality  $\frac{x^2+2x-15}{x-1} \le 0$ . Write the solution in interval form
- 27. (4 points) Consider the inequality |x + 1| 2 < 5. Which correctly describes the first step in solving the inequality:
- (a) Elene's first step to solve the inequality is: |x + 1| < 7.
- (b) Keti's first step to solve the inequality is: -5 < x + 1 2 < 5.
- (c) Masho's first step to solve the inequality is: -5 > x + 1 2 > 5.
- (d) All are correct steps.
- (e) None is a correct step.

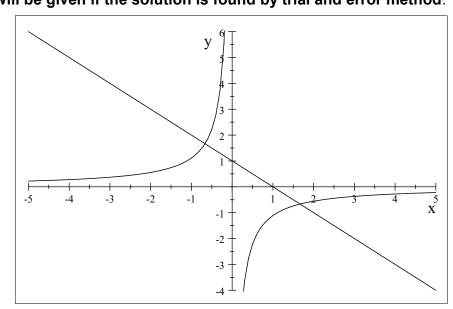

Circle all that apply.

- 28. (4 points) If a ball is thrown directly upward with a velocity of  $30ft/\sec$ , its height (in feet) after t seconds is given by  $h(t) = 30t 16t^2$ . After how many seconds does the ball reach the maximum height? **Write an exact answer**, **do not approximate**.
- 29. (9 points) Graph the rational function  $f(x) = \frac{x^2}{x+2}$ . Your graph should clearly show and label all x and y –intercepts and asymptotes.

30. (7 points) Assume that the following sequence is arithmetic and find the sum using appropriate formulas: 4+7+10+13+...+310.

31. (7 points) Solve the following system of linear equations using matrices (row operations). **No points will be given if the solution is found through trial and error**.

$$\begin{cases} x+y+z=3\\ -x+z=-3\\ 2x+3y-z= \end{cases}$$




<sup>33. (7</sup> points) A certain type of bacteria, given a favorite growth medium, doubles in population every 5 hours. ( $N(t) = N_0 e^{kt}$ .)

<sup>(</sup>a) Given that there were 150 bacteria to start with, how many bacteria will there be in 48 hours?

<sup>(</sup>b) If the carrying capacity (the maximum size) of this bacteria in the natural environment can be only 100,000,000, is this exponential model an appropriate model for this population?

- 34. Consider the system of nonlinear equations:  $\begin{cases} xy = -\frac{10}{9} \\ x + y = 1 \end{cases}$
- (a) (2 points) Estimate the real solutions by examining the graphs below. Write your estimates as ordered pairs.
- (b) (5 points) Solve the system algebraically. Keep the solutions as fractions, not decimals. **No points will be given if the solution is found by trial and error method**.



35. (5 points) Let  $f(x) = \frac{3}{x} + 1$ . Find the inverse of the function f(x).

36. (8 points) Solve the inequality:  $\frac{2x-1}{x+1} \ge 1$ . Write the solution in interval notation.