Math-3 Lesson 8-2 Quadratic Formula

Find the Zeroes

$$
\begin{array}{cl}
y=x^{2}-6 x+8 & 0=(x-4)(x-2) \\
& x=4,2 \\
y=x^{2}-6 x+2 & 0=(x-3)^{2}-7 \\
& x=3 \pm \sqrt{7}
\end{array}
$$

$$
y=3 x^{2}-5 x-12 \quad 0=3 x^{2}-9 x+4 x-12
$$

Factor by box

$$
\begin{aligned}
& 0=(3 x+4)(x-3) \\
& x=-\frac{4}{3}, 3
\end{aligned}
$$

How do we find the zeroes of non-factorable standard form quadratic equation?

$$
y=x^{2}-6 x+2
$$

1) Set $y=0$
2) Convert to "vertex form"
3) Solve for ' x ' by "isolate the square, undo the square"

$$
0=(x-3)^{2}-7
$$

$$
x=3 \pm \sqrt{7}
$$

Quadratic Formula: gives the solutions (x-intercepts) to ANY quadratic equation in standard form.

$$
\begin{aligned}
& y=a x^{2}+b x+c \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

How did we get the quadratic formula?

1) We set $\mathrm{y}=0 \quad y=a x^{2}+b x+c$

$$
0=a x^{2}+b x+c
$$

2) Convert to vertex form (remember the VSF = 'a')
x-coordinate of vertex: $x=-b / 2 a$
The y-coordinate of the vertex is: $f(-b / 2 a)$

$$
\begin{aligned}
& f\left(-\frac{b}{2 a}\right)=a\left(\frac{-b}{2 a}\right)^{2}+b\left(\frac{-b}{2 a}\right)+c \\
& f\left(-\frac{b}{2 a}\right)=\frac{a b^{2}}{4 a^{2}}-\frac{b^{2}}{2 a}+c
\end{aligned}
$$

The x-coordinate of the vertex is: $x=-b / 2 a$
The y-coordinate of the vertex is: $\mathrm{f}(-\mathrm{b} / 2 \mathrm{a})$

$$
f\left(-\frac{b}{2 a}\right)=\frac{a b^{2}}{4 a^{2}}-\frac{b^{2}}{2 a}+c=\frac{b^{2}}{4 a}-\frac{b^{2}}{2 a}+c
$$

Obtain common denominators then Add fractions

$$
f\left(-\frac{b}{2 a}\right)=\frac{b^{2}}{4 a}-\frac{2 b^{2}}{4 a}+\frac{4 a c}{4 a}=\frac{-b^{2}+4 a c}{4 a}
$$

Write in Vertex form:

$$
0=a\left(x+\frac{b}{2 a}\right)^{2}-\left(\frac{-b^{2}+4 a c}{4 a}\right)
$$

Vertex form: $\quad 0=a\left(x+\frac{b}{2 a}\right)^{2}-\left(\frac{b^{2}-4 a c}{4 a}\right)$
3) Solve for ' x ' by "Isolate the square, undo the square"

$$
\begin{array}{ll}
\frac{b^{2}-4 a c}{4 a}=a\left(x+\frac{b}{2 a}\right)^{2} & \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}=x+\frac{b}{2 a} \\
\frac{b^{2}-4 a c}{4 a^{2}}=\left(x+\frac{b}{2 a}\right)^{2} & x=-\frac{b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}
\end{array}
$$

Your turn:
 $$
y=a x^{2}+b x+c
$$

Identify 'a' 'b' and 'c' for each of these standard form quadratic equations.

$$
\begin{aligned}
& y=x^{2}-4 x+3 \\
& y=-2 x^{2}+3 x-7 \\
& y=3 x^{2}-10 \\
& y=-x^{2}+3 x
\end{aligned}
$$

What if it's not in standard form?
$2 x=3 x^{2}-5$
Use math properties to get it into standard form (same thing left/right, combine like terms, etc.)

$$
\begin{aligned}
& 0=3 x^{2}-2 x-5 \quad a=3 \quad b=-2 \quad c=-5 \\
& a=? \quad b=? \quad c=?
\end{aligned}
$$

Determine the following values: $a=$?, $b=$?, $c=$?

$$
\begin{aligned}
& y=3-12 x^{2}-4 x \\
& 5 x=3 x^{2}-5 x+1
\end{aligned}
$$

Solve using the Quadratic formula.

$$
\begin{gathered}
y=a x^{2}+b x+c \\
y=x^{2}-6 x+4 \\
a=1 \quad b=-6 \quad c=4 \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
x=\frac{-(-6) \pm \sqrt{(-6)^{2}-4(1)(4)}}{2(1)} \\
x=\frac{6 \pm \sqrt{36-16}}{2}
\end{gathered}
$$

$$
\begin{gathered}
x=\frac{6 \pm \sqrt{20}}{2} \\
x=\frac{6 \pm \sqrt{4} \sqrt{5}}{2} \\
x=\frac{6 \pm 2 \sqrt{5}}{2} \\
x=\frac{6}{2} \pm \frac{2 \sqrt{5}}{2} \\
x=3 \pm \sqrt{5}
\end{gathered}
$$

If the quadratic CANNOT be factored, the solutions are "ugly."

Can you "plug" ' a ', 'b', and 'c' into the Quadratic formula?

$$
y=a x^{2}+b x+c
$$

Identify ' a ', ' b ', and ' c ' in the standard form equation.

$$
\begin{aligned}
& y=x^{2}+3 x+2 \\
& \mathrm{a}=1 \quad \mathrm{~b}=3 \quad \text { = } \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

$$
x=\frac{-() \pm \sqrt{()^{2}-4()()}}{2()}
$$

Put the numerical values of 'a', 'b', 'c' into the parentheses.

$$
x=\frac{-(3) \pm \sqrt{(3)^{2}-4(1)(2)}}{2(1)}
$$

Replace the ' a ', ' b ', and ' c ' with parentheses!!!

$$
\begin{array}{ll}
y=a x^{2}+b x+c & x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
y=x^{2}+x-1 & x=\frac{-(1) \pm \sqrt{(1)^{2}-4(1)(-1)}}{2(1)}
\end{array}
$$

"Gotcha" parts of the formula.

$$
\begin{aligned}
& y=a x^{2}+b x+c \\
& y=x^{2}-15 x-1 又_{c=-1} \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& a=1 \quad b=-15
\end{aligned}
$$

$$
x=\frac{-(-15) \pm \sqrt{\left.(-15)^{2}\right)-4(1)(-1)}}{2(1)}
$$

If you don't use the parentheses, it would be easy to write this as -15^{2} instead of $(-15)^{2}$

If you don't use the parentheses, it would be easy to write this as -15

With the parentheses, -(-15) simplifies to $+15!!!$

$$
\begin{aligned}
& -15^{2}=-225 \\
& (-15)^{2}=+225
\end{aligned}
$$

"Gotcha" parts of the formula.

$$
x=\frac{-(-15) \pm \sqrt{(-15)^{2}-4(1)(-1)}}{2(1)}
$$

It is easy to make mistakes with the negatives.
If you use parentheses, then you can type the expression under the radical into your calculator and it will be correct. $\quad(-15)^{2}-4(1)(-1)=229$

$$
x=\frac{15 \pm \sqrt{229}}{2}
$$

Plug in and simplify

$$
\begin{array}{cc}
y=a x^{2}+b x+c & \\
y=x^{2}+x-1 & x=\frac{-1}{2} \pm \frac{\sqrt{5}}{2} \\
x=\frac{-(1) \pm \sqrt{(1)^{2}-4(1)(-1)}}{2(1)} & x=\frac{-1}{2}+\frac{\sqrt{5}}{2} \\
x=\frac{-1 \pm \sqrt{1+4}}{2} & x=\frac{-1}{2}-\frac{\sqrt{5}}{2} \\
x=\frac{-1 \pm \sqrt{5}}{2} &
\end{array}
$$

Another one (be careful of the "gotcha's")

$$
\begin{array}{ll}
y=a x^{2}+b x+c & x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
y=x^{2}-4 x+3 \\
\mathrm{a}=1 \quad \mathrm{~b}=-4 \quad \mathrm{c}=3 & x=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(1)(3)}}{2(1)}
\end{array}
$$

Can you simplify the result?

$$
\begin{array}{cc}
x=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(1)(3)}}{2(1)} & \\
x=\frac{4 \pm \sqrt{16-12}}{2} & x=\frac{4}{2} \pm \frac{2}{2} \\
x=\frac{4 \pm \sqrt{4}}{2} & x=2 \pm 1 \\
x=\frac{4 \pm 2}{2} & x=1,3
\end{array}
$$

Find the Zeroes using the quadratic formula.

$$
\begin{gathered}
x=-\frac{()}{2()} \pm \frac{\sqrt{()^{2}-4()(~)}}{2()} \\
y=x^{2}-2 x+8 \\
x=\frac{-(-2)}{2(1)} \pm \frac{\sqrt{(-2)^{2}-4(1)(8)}}{2(1)} \\
=1 \pm \frac{\sqrt{4-32}}{2}=1 \pm \frac{\sqrt{-28}}{2}=1 \pm \frac{2 i \sqrt{7}}{2} \\
=1 \pm i \sqrt{7}
\end{gathered}
$$

Imaginary zeros always come in conjugate pairs.

Find the Zeroes using the quadratic formula.

$$
\begin{gathered}
x=-\frac{()}{2()} \pm \frac{\sqrt{()^{2}-4()()}}{2()} \\
y=x^{2}-6 x+2 \\
x=\frac{-(-6)}{2(1)} \pm \frac{\sqrt{(-6)^{2}-4(1)(2)}}{2(1)} \\
=3 \pm \frac{\sqrt{36-8}}{2}=3 \pm \frac{\sqrt{28}}{2} \\
=3 \pm \frac{\sqrt{4 * 7}}{2}=3 \pm \frac{2 \sqrt{7}}{2} \quad x=3 \pm \sqrt{7}
\end{gathered}
$$

Irrational zeros alwavs come in conjugate pairs.

Find the Zeroes using the quadratic formula.

$$
\begin{aligned}
& x=-\frac{()}{2()} \pm \frac{\sqrt{()^{2}-4()()}}{2()} \\
& y= 3 x^{2}-5 x-12 \\
& x= \frac{-(-5)}{2(3)} \pm \frac{\sqrt{(-5)^{2}-4(3)(-12)}}{2(3)} \\
& x=\frac{5}{6} \pm \frac{\sqrt{25+144}}{6}=\frac{5}{6} \pm \frac{13}{6} \quad=\frac{18}{6}, \frac{-8}{6} \\
& x=\frac{5}{6} \pm \frac{\sqrt{169}}{6} x=3,-\frac{4}{3}
\end{aligned}
$$

"Nice zeroes" means it could have been factored.

Fundament Theorem of Algebra: A second degree polynomial as two zeros. $y=a x^{2}+b x+c$ $2^{\text {nd }}$ Degree polynomial zeros come in 3 "flavors"

Rational number zeros (numbers that can be written as a ratio of integers)

$$
x=3,-\frac{4}{3}
$$

Irrational number zeros (always

$$
x=3 \pm \sqrt{7}
$$ come in conjugate pairs

Imaginary number zeros (always come in conjugate pairs

$$
x=1 \pm i \sqrt{7}
$$

Rational number zeros
 $$
x=3,-\frac{4}{3}
$$

Irrational number zeros
 $$
x=3 \pm \sqrt{7}
$$

Imaginary number zeros $\quad x=1 \pm i \sqrt{7}$

How can the quadratic formula allow you to predict what kind of zeros you'll get?
$y=a x^{2}+b x+c \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Rational number zeros $x=3,-\frac{4}{3}$
Irrational number zeros $x=3 \pm \sqrt{7}$
Imaginary number zeros $x=1 \pm i \sqrt{7} \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

How can the quadratic formula allow you to predict what kind of zeros you'll get?

1) If the radicand is a perfect square \rightarrow rational \# zeros.
2) If the radicand is a positive number but not a perfect square \rightarrow irrational \# zeros.
3) If the radicand is a negative number \rightarrow imaginary \# zeros.
"Discriminant" the radicand of the quadratic formula \rightarrow it allows us to predict what kind of zeros we will get.

Rational number zeros $x=3,-\frac{4}{3} \quad y=a x^{2}+b x+c$ Irrational number zeros $x=3 \pm \sqrt{7}$ Imaginary number zeros $x=1 \pm i \sqrt{7} \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
What kind of zeros will we get for this equation?

$$
y=x^{2}-3 x+8
$$

$b^{2}-4 a c=(-3)^{2}-4(1) 8=-23 \quad$ Imaginary zeros

$$
y=x^{2}-5 x+5
$$

$b^{2}-4 a c=(-5)^{2}-4(1) 5$
$y=x^{2}-4 x+3$
$b^{2}-4 a c=(-4)^{2}-4(1) 3=4$
Rational zeros

