Math-3

Lesson 8-1

3rd Degree Polynomials
And Polynomial Division

Find the zeroes of the following $3^{\text {rd }}$ degree Polynomial

$$
y=x^{3}+5 x^{2}+4 x \quad \text { Set } y=0
$$

$0=x^{3}+5 x^{2}+4 x$
Factor out the common factor.
$0=x\left(x^{2}+5 x+4\right)$
$0=x(x+1)(x+4)$
Factor the quadratic

$$
0, \quad-1, \quad-4
$$

Factor the following "nice" $3^{\text {rd }}$ degree polynomials then find the "zeroes" of the polynomial.

$$
\begin{gathered}
y=x^{3}+5 x^{2}-14 x \\
0=x^{3}+5 x^{2}-14 x \\
0=x\left(x^{2}+5 x-14\right) \\
0=x(x+7)(x-2) \\
0, \quad-7,
\end{gathered}
$$

$$
\begin{gathered}
y=3 x^{3}-24 x^{2}+6 \\
0=3 x\left(x^{2}-8 x+2\right) \\
x=0 \\
x=\frac{-b}{2 a}=\frac{-(-6)}{2(1)} \\
x=4 \\
y=f(4)=(4)^{2}-8(4)+2 \\
y=-14 \quad 0=(x+4)^{2}-14 \\
x=-4 \pm \sqrt{14}
\end{gathered}
$$

Another "Nice" 3rd Degree Polynomial

$$
y=a x^{3}+b x^{2}+c x+d
$$

This has the constant term, but it has a very useful feature:

$$
\begin{gathered}
y=1 x^{3}+2 x^{2}+2 x+4 \\
\text { What pattern do you see? } \\
3 r d / 1 s t=2 / 1 \quad 4 t h / 2 n d=4 / 2=2 / 1
\end{gathered}
$$

An easy method is "box factoring" if it has this nice pattern.

$$
y=1 x^{3}+2 x^{2}+2 x+4
$$

These 4 terms are the numbers in the box.
Find the common factor of the $1^{\text {st }}$ row.
Fill in the rest of the box.
Rewrite in intercept form.

$$
\begin{aligned}
& y=1 x^{3}+2 x^{2}+2 x+4 \\
& y=\left(x^{2}+2\right)(x+2)
\end{aligned}
$$

Find the "zeroes."

$$
\begin{gathered}
0=\left(x^{2}+2\right)(x+2) \\
0=x^{2}+2 \quad 0=x+2
\end{gathered}
$$

	x	2
x^{2}	x^{3}	$2 x^{2}$
2	$2 x$	4

$$
x= \pm i \sqrt{2}^{-2}
$$

$$
-2=x^{2}
$$

Find the zeroes using "box factoring"

$$
\begin{gathered}
y=4 x^{3}-5 x^{2}+12 x-15 \\
0=\left(x^{2}+3\right)(4 x-5) \\
0=x^{2}+3 \quad 4 x-5=0 \\
-3=x^{2} \quad 4 x=5 \\
x= \pm i \sqrt{3} \quad x=5 / 4 \\
x=\mathrm{i} \sqrt{3},-\mathrm{i} \sqrt{3}, 5 / 4
\end{gathered}
$$

What have we learned so far?

"Nice" Common Factor $3^{\text {rd }}$ degree polynomial:

$$
\begin{array}{r}
y=x^{3}+3 x^{2}+2 x \quad=x\left(x^{2}+3 x+2\right) \\
=x(x+1)(x+2)
\end{array}
$$

"Nice" Factor by box $3^{\text {rd }}$ degree polynomial:

$$
y=2 x^{3}+3 x^{2}+4 x+6
$$

"Nice" Difference of Squares (of higher degree):

$$
\begin{array}{lrl}
y=x^{4}-81 & \text { Use " } m \text { " substitution Let } & m^{2}=x^{4} \\
y=m^{2}-81
\end{array} \quad \text { Then } \quad m=x^{2} .
$$

$$
y=m^{2}-81
$$

$$
y=(m+9)(m-9)
$$

Use " m " substitution

$$
\begin{aligned}
& y=\left(x^{2}+9\right)\left(x^{2}-9\right) \\
& y=(x+3)(x-3)(x+3 i)(x-3 i)
\end{aligned}
$$

Find the zeroes. $\quad x=-3,3,-3 \mathrm{i}, 3 \mathrm{i}$

Zeroes of Polynomials $\leftarrow \rightarrow$ factors of Polynomials

Zeros come from linear factor of the polynomial

$$
\begin{gathered}
x=-3,4,-5,6 \\
y=(x+3)(x-4)(x+5)(x-6)
\end{gathered}
$$

Imaginary Zeros always come in conjugate pairs.

$$
\begin{gathered}
x=3,-2 i, 2 i \\
y=(x-3)(x+2 i)(x-2 i)
\end{gathered}
$$

Irrational Zeros always come in conjugate pairs.

$$
\begin{gathered}
x=0, \sqrt{5},-\sqrt{5} \\
y=x(x-\sqrt{5})(x+\sqrt{5})
\end{gathered}
$$

Fundamental Theorem of Algebra: If a polynomial has a degree of "n", then the polynomial has "n" zeroes (provided that repeat zeroes, called "multiplicities" are counted separately).

$$
\begin{aligned}
& y=6 x^{4}+42 x^{3}+96 x^{2}+28 x+48 \\
& " 4^{\text {th }} \text { Degree" } \rightarrow 4 \text { zeroes } \quad x=-4,-3,2 i,-2 i
\end{aligned}
$$

Linear Factorization Theorem: If a polynomial has a degree of " n ", then the polynomial can be factored into " n " linear factors.

$$
y=6(x+4)(x+3)(x-2 i)(x+2 i)
$$

Since each linear factor has one zero, these two theorems are almost saying the same thing.

Polynomial Long division: One method used to divide polynomials similar to long division for numbers.

$$
\frac{x^{3}+3 x^{2}+14 x-18}{(x-1)}=a x^{2}+b x+c
$$

Divide Evenly: A divisor divides evenly if there is a zero for the remainder.

The Factor Theorem: If a linear factor divides the polynomial evenly, then it is a factor of the polynomial and the zeros of the factor are also zeros of the polynomial.

The purpose for long division: is to "rapidly" determine the zeros of "not nice" polynomials.

What are the zeroes?

$$
0=(2 x-5)(3 x+7) \quad x=\frac{5}{2}, \frac{-7}{3}
$$

Multiply the two binomials (convert to standard form)

$$
0=6 x^{2}-x-35
$$

What do you notice about the first and last terms and the zeroes?

$$
\begin{array}{rl}
0 & =6 x^{2}-x-35 \\
2(3)=6 & x=\frac{-7}{2,} 3
\end{array}
$$

The Rational Zeroes Theorem: the possible rational zeroes of a polynomial are factors of the constant divided by factors of the lead coefficient. $0=6 x^{2}-x-35$

$$
\begin{gathered}
x= \pm \frac{1,5,7,35}{1,2,3,6} \quad x=\frac{5}{2}, \frac{-7}{3} \\
x= \pm 1,5,7,35, \frac{1}{2}, \frac{1}{3}, \frac{1}{6}, \frac{5}{2}, \frac{7}{2}, \frac{7}{3}, . ., \frac{35}{3}, \frac{35}{6}
\end{gathered}
$$

What are the zeroes? $\quad 0=(x-3)(2 x+1)(x-4)$

$$
x=3, \quad \frac{-1}{2}, \quad 4
$$

If we convert to standard form, we have:

$$
0=2 x^{3}-13 x^{2}+17 x+12
$$

What do you notice about the first and last terms and the zeroes?

$$
\begin{gathered}
0=2 x^{3}-13 x^{2}+17 x+12 \\
x=3, \quad \frac{-1}{2}, \quad 4
\end{gathered}
$$

$\oplus \frac{1,2,3,4,6,12}{(1,2}$

$\oplus \frac{1,2,3,4,6,12}{(1 .)} 2$

Polynomial Long Division

(x) -1

$\frac{\left(x^{2}\right)}{\left(x^{3}\right)+3 x^{2}+14 x-18}$

1) Look at left-most numbers
2) What \# times "left" = "left"?

$$
x^{3} / x=?=x^{2}
$$

3) Multiply

$$
x^{2}(x-1)=x^{3}-x^{2}
$$

4) Subtract

$$
-\left(x^{3}-x^{2}\right)
$$

Polynomial Long Division

$$
x - 1 \longdiv { x ^ { 3 } + 3 x ^ { 2 } + 1 4 x - 1 8 } \text { 4) Subtract }
$$

$$
-\left(x^{3}-x^{2}\right)
$$

Careful with the negatives!
$4 x^{2}+14 x-18$
5) Bring down.
(x) -1

$$
\begin{aligned}
& \text { Polynomial Long Division } \\
& \text { Polynomial Long Division } \\
& \frac{x^{2}+4 x}{x^{3}+3 x^{2}+14 x-18} \\
& \text { 6) Repeat steps 1-5. } \\
& -\left(x^{3}+x^{2}\right) \\
& \text { 1) Look at left- } \\
& \text { most numbers } \\
& -\left(4 x^{2}-4 x\right) \\
& \text { 2) What \# times } \\
& \text { "left" = "left"? } \\
& 18 x \\
& 4 x^{2} \\
& =4 x \\
& x \\
& \text { 3) Multiply } \\
& 4 x(x-1)=4 x^{2}-4 x \\
& \text { 4) Subtract }
\end{aligned}
$$

$$
-\left(4 x^{2}-4 x\right)
$$

Polynomial Long Division

$$
x-1 \int_{\substack{x^{3}+3 x^{2}+14 x-18 \\-\left(x^{3}+x^{2}\right)}} \quad \text { 4) Subtract }
$$

$-\left(4 x^{2}-4 x\right)$
$18 x-18$

Careful of the negatives
5) Bring down.

Polynomial Long Division

(x) $- 1 \longdiv { x ^ { 2 } + 4 x + 1 8 } \longdiv { x ^ { 3 } + 3 x ^ { 2 } + 1 4 x - 1 8 }$ $-\left(x^{3}+x^{2}\right)$

$$
\begin{array}{r}
4 x^{2}+14 x-18 \\
-\left(4 x^{2}-4 x\right) \\
\hline(18 x)-18 \\
-(18 x-18) \\
\hline
\end{array}
$$

$\begin{aligned} 0 & \text { 18 }(x-1) \\ & \text { 4) Subtract }\end{aligned}$

$$
\begin{aligned}
& x - 1 \longdiv { x ^ { 2 } + 4 x - 1 8 } \begin{array} { | c }
{ x ^ { 3 } + 3 x ^ { 2 } + 1 4 x - 1 8 }
\end{array} \\
& -\left(x^{3}+x^{2}\right) \\
& 4 x^{2}+14 x-18 \\
& -\left(4 x^{2}-4 x\right) \\
& 18 x-18 \\
& -(-18 x+18) \\
& \text { How do we find the } \\
& \text { zeroes of the } \\
& \text { quadratic factor? } \\
& x^{3}+3 x^{2}+14 x-18=(x-1)\left(x^{2}+4 x-18\right) \\
& \text { 1) Factor, or } \\
& \text { 2) Quadratic Formula, or } \\
& \text { 3) Convert to vertex form and take square roots. }
\end{aligned}
$$

Synthetic Division

$x - 1 \longdiv { x ^ { 3 } - 4 x ^ { 2 } - 1 5 x + 1 8 }$ $\left.1 \longdiv { 1 } \begin{array} { l l l l } { 1 } & { - 4 } & { - 1 5 } & { 1 8 } \\ { \hline 1 } & { } & { } \\ { 1 } & { } & { } \end{array}\right)$

$1^{\text {st }}$ step: Write the polynomial with only its coefficients.
$2^{\text {nd }}$ step: Write the "zero" of the linear divisor.
3rd step: Bring down the lead coefficient

$$
x - 1 \longdiv { x ^ { 3 } - 4 x ^ { 2 } - 1 5 x + 1 8 }
$$

$4^{\text {th }}$ step: Multiply the "zero" by the lead coefficient. 5th step: Write the product under the next term to the right. $6^{\text {th }}$ step: add the second column downward

$$
x - 1 \longdiv { x ^ { 3 } - 4 x ^ { 2 } - 1 5 x + 1 8 }
$$

$7^{\text {th }}$ step: Multiply the "zero" by the second number
8th step: Write the product under the next term to the right. $9^{\text {th }}$ step: add the next column downward

$$
x - 1 \longdiv { x ^ { 3 } - 4 x ^ { 2 } - 1 5 x + 1 8 }
$$

$10^{\text {th }}$ step: Multiply the "zero" by the 3rd number
11th step: Write the product under the next term to the right $12^{\text {th }}$ step: add the next column downward

$$
x - 1 \longdiv { x ^ { 3 } - 4 x ^ { 2 } - 1 5 x + 1 8 } = x ^ { 2 } - 3 x - 1 8
$$

$$
\begin{array}{rccc}
1 \begin{array}{c}
1 \\
\end{array} & -4 & -15 & 18 \\
& 1 & -3 & -18 \\
\hline 1 & -3 & -18 & 0
\end{array}
$$

This last number is the remainder when you divide:

$$
\begin{gathered}
x^{3}-4 x^{2}-15 x+18 \\
\text { by } \\
x-1
\end{gathered}
$$

Because the remainder $=0$, then $(x-1)$ is a factor AND $x=1$ is a zero of the original polynomial!

The Sum of cubes: factors as the cubed root of each term multiplied $\quad y=x^{3}+64$ by a $2^{\text {nd }}$ degree polynomial.
Find the $1^{\text {st }}$ zero $\quad 0=x^{3}+64 \quad-64=x^{3}$

$$
\sqrt[3]{-64}=x \quad x=-4 \quad y=(x+4)\left(a x^{2}+b x+c\right)
$$

Use polynomial division to find the quadratic factor.
$x + 4 \longdiv { x ^ { 3 } + 6 4 } \quad y = (x + 4) (x ^ { 2 } - 4 x + 1 6)$

$$
\begin{array}{r}
\left.\left.- 4 \longdiv { 1 } \begin{array} { c c c c }
{ 0 } & { 0 } & { 6 4 } \\
{ } & { - 4 } & { 1 6 } & { - 6 4 } \\
{ \hline 1 } & { - 4 } & { 1 6 } & { 0 } \\
{ \hline }
\end{array}\right] \begin{array}{ll}
&
\end{array}\right)
\end{array}
$$

Find Zeros the Quadratic Factor

1) Factor (not possible)
2) Quadratic Formula or
3) Convert to vertex form and take square roots.
