Math-2 VOCAB 5-4 (Find Zeroes of Vertex Form)

Vertex Form quadratic equation (transformation form) $f(x)=a(x-h)^{2}+k \quad f(x)=-3(x+1)^{2}+2$

$$
f(x)=a x^{2}+k
$$

Standard Form quadratic equation

$$
\begin{array}{cr}
g(x)=a x^{2}+b x+c & g(x)=6 x^{2}+7 x+2 \\
k(x)=a(m x-p)(n x-q) & k(x)=2(3 x+7)(x-2)
\end{array}
$$

Intercept Form quadratic equation
"Zero" of a 2-variable equation: the input value of an equation that causes the output to equal zero.

Real number "Zeroes" are the x-intercepts of the graph.

Imaginary number "Zeroes" cannot
be graphed on the $x-y$ plane

Solve by taking square roots: a method of obtaining zeroes of a quadratic equation that is in vertex form.

$$
y=x^{2}-5 \quad y=(x-2)^{2}-9
$$

To use this method, set $\mathrm{y}=0$ then use the property of equality to "isolate the square" then "undo the square."
Although the equation $y=x^{2}-5$ could be considered a standard form quadratic, because it does not have an ' x ' term, we can call it a vertex form equation and so it is suitable for this method.

