SM2 VOCAB 5-1 (Factoring Simple Trinomials)

Standard Form Quadratic Expression: an expression of the form $a x^{2}+b x+c$ where ' a ', ' b ', and ' c ' are numerals (usually integers). In this lesson we will cover simple trinomials that have a "lead coefficient of ' 1 ':

$$
x^{2}+b x+c
$$

Standard form quadratic expressions have already been "simplified". There are no "like terms" and the same-based powers (base with its exponent) are arranged from left to right so that the exponents become smaller and smaller.
Examples:

$$
3 x^{2}+7 x-6
$$

$$
3 x^{2}-9 x+6
$$

\square
$x^{2}-2$

Factored Form Quadratic Expression: an expression of the form:

$$
a(x-p)(x+q)
$$ where ' a ', ' p ', and ' q ' are numerals (usually integers).

Notice that you don't see any exponents. The number 'a' would be a common factor on one of the binomials (or a product of the common factors of both binomials).

$$
\text { Examples: } \quad 2(x-3)(x+4) \quad 6(x-2)(x+1) \quad x(x+3)
$$

"The Difference of Two Squares": a binomial where each term can be considered the square of a number.
They always factor into "conjugate pairs". Examples: $\quad x^{2}-1 \quad x^{2}-2 \rightarrow \rightarrow(x)^{2}-(\sqrt{2})^{2}$
Conjugate pair (of binomials): a pair of binomials where the terms are the same for both binomials except that one has an opposite sign that the other. Examples:

$$
(x-1)(x+1) \quad(x-\sqrt{2})(x+\sqrt{2})
$$

"The Sum of Two Squares": a binomial where each term can be considered the square of a number. They always factor into imaginary number "conjugate pairs". Examples:

$$
x^{2}+4
$$

$$
\rightarrow(x+2 i)(x-2 i)
$$

$$
x^{2}+3
$$

$$
\rightarrow(x+i \sqrt{3})(x-i \sqrt{3})
$$

