Math-2
 Lesson 5-6

Modeling with Quadratic Equations Area problems

Quantity	Unit of Measure
Height	Inches, feet, miles, etc.
Weight	Pounds, ounces, kilograms, grams
Temperature	Degrees F, Degrees C, Degrees K

Sometimes ratios of quantities become new quantities

Quantity	Ratio of:	Unit of Measure
Speed	Distance/time	Mile/hr, ft/sec, km/hr
"unit price"	Cost/weight	\$/lbm, \$/ounce
Efficiency	Distance/volume used	Miles/gallon, Km/liter

Vocabulary

Mathematical Modeling: representing a real-world phenomenon or quantity with an equation or inequality.

Formula: an equation that shows the relationship between two or more quantities.

Examples of formulas you've seen are:

$$
\begin{array}{ll}
A_{\text {circle }}=\pi r^{2} & V_{b o x}=L^{*} w^{* h} \\
A_{\text {rectangle }}=L * W & A=\frac{1}{2}\left(b_{1}+b_{2}\right) h
\end{array}
$$

Expressions from Phrases

What mathematical expression represents the following?

Three more than twice a number

$$
2 x+3
$$

Five less than three times a number $3 x-5$
The width is 4 times the length. $w=4 L$

The area of a rectangle whose width is $A=L w$ 4 times its length.

$$
A=L(4 L)
$$

Write a mathematical expression that represent each statement:

1. The number of girls is three less than twice the number of boys. $\quad g=2 \mathrm{~b}-3$
2. The salary after a 4% increase $\quad S_{f}=S_{i}+0.04 * S_{i}$
3. Area of a rectangle whose length is 2 more than twice its width.

$$
A=(2 w+2) * w \quad A=2 w^{2}+2 w
$$

4. The area of a rectangle with the same size square cut out of each corner.

$$
A=L w-4 x^{2}
$$

Area of a Rectangle

The length of a rectangle is 4 more than 3 times its width.
The area of the rectangle is 200 square inches.
What is the length and width of the rectangle?
Area $=L$ * W
$L=3 W+4 \quad A=200$

Using substitution:
$200=(3 W+4) * W$
Solve by graphing.

Area of a Rectangle
Area $=L$ * W

$$
L=3 W+4 \quad A=200
$$

Using substitution: $200=(3 W+4) * W$ Solve by graphing.

Get into "zero equals form"

$$
\begin{aligned}
& 0=W(3 W+4)-200 \\
& \text { Let ' } x \text { ' }=\text { width } \\
& 0=x(3 x+4)-200
\end{aligned}
$$

$y=x(3 x+4)-200$
Find the "zero" of the equation.

' x ' $=$ width $=7.53$ inches

Area of a Rectangle

Area $=L$ * W
$\mathrm{L}=3 \mathrm{~W}+4 \quad \mathrm{~A}=200$
Using substitution:

$$
200=(3 W+4) * W
$$

$y=x(3 x+4)-200$
Using substitution:

$$
\begin{aligned}
\mathrm{L} & =3 \mathrm{~W}+4 \\
\mathrm{~L} & =3(7.53)+4 \\
\mathrm{~L} & =26.59 \text { inches }
\end{aligned}
$$

Check:
$200=$ L*W

Check:
$200=(26.59)(7.53) \quad$ ' x ' $=$ width $=7.53$ inches

Area of a Rectangle

The length of a rectangle is 7 less than 4 times its width.
The area of the rectangle is 6600 square inches.
What is the length and width of the rectangle?
Area =
L =
Using substitution:
$\underline{Z}=\left(\quad\right.$) ${ }^{*}$
Solve by graphing.

Area of a Rectangle

200 feet of fence is used to build a rectangular horse corral.
One side of the corral is next to a large barn and does not need to be fence.
a) Draw a top-view picture of the corral and barn.

b) Label the length of each side of a fenced corral using only one variable.
c) Using the rectangle area formula, write an equation that has only one variable.

$$
A(x)=x(200-2 x)
$$

d) What are the x-intercepts?

$$
\begin{aligned}
& A(x)=x(200-2 x) \\
& (0,0) \text { and }(100,0)
\end{aligned}
$$

e) What is the vertex?

$$
(50, f(50) \rightarrow(50,5000)
$$

f) Hand-draw a graph of the equation with the axes correctly labeled.
g) Graph the equation on your calculator, and find the vertex using " $2^{\text {nd" }}+$ "calc" + "maximum"

$(50,5000)$

Side length (ft)

