Math-2 Lesson 5-4

Finding X-intercepts of the Vertex Form Quadratic Equation

What is the name of the quadratic equation form?
Vertex Form quadratic equation (transformation form)

$$
\begin{aligned}
& f(x)=a(x-h)^{2}+k \\
& f(x)=-3(x+1)^{2}+2
\end{aligned}
$$

Standard Form quadratic equation

$$
\begin{aligned}
& g(x)=a x^{2}+b x+c \\
& g(x)=6 x^{2}+7 x+2
\end{aligned}
$$

Intercept Form quadratic equation

$$
\begin{aligned}
k(x) & =a(m x-p)(n x-q) \\
k(x) & =2(3 x+7)(x-2)
\end{aligned}
$$

$$
y=a x^{2}+b x+c
$$

In General, if the standard form quadratic has no x-term $(b=0)$,
then we have a "nice" 2-term quadratic equation
$(\mathrm{a} \neq 1$, and $\mathrm{b}=0)$ that is easily factored. $y=a x^{2}+c$
Always factors into: $y=\left(\sqrt{a x^{2}}+\sqrt{c}\right)\left(\sqrt{a x^{2}}-\sqrt{c}\right)$
Check it with the box.

$$
\begin{gathered}
y=(9 x+5)(9 x-5) \\
y=81 x^{2}-25
\end{gathered}
$$

	$9 x$	-5
$9 x$	$81 x^{2}$	$-45 x$
5	$45 x$	-25

Check it with the box.

$$
\begin{aligned}
& y=(7 x+i)(7 x-i) \\
& y=49 x^{2}+1
\end{aligned}
$$

	7 X	i
7 x	x^{2}	$7 x i$
$-i$	$-7 x i$	$-i^{2}$

Irrational Conjugates Theorem: IF an equation is of the form $y=x^{2}-c$, where 'a' is not a perfect square, THEN it always factors into irrational conjugate

$$
y=(x+\sqrt{c})(x-\sqrt{c})
$$

with the following zeroes: $\quad x=-\sqrt{c}, \sqrt{c}$
Complex Conjugates Theorem: IF an equation is of the form $y=x^{2}+c$, THEN it always factors into conjugate binomial pairs of imaginary numbers.

$$
y=(x+i \sqrt{c})(x-i \sqrt{c})
$$

with the following zeroes: $x=-i \sqrt{c}, i \sqrt{c}$

Review: simplify the following expressions

$$
\begin{aligned}
& \frac{\sqrt{6}}{2} \rightarrow \frac{\sqrt{2 * 3}}{2} \begin{array}{l}
\text { No pairs, can't } \\
\text { be simplified }
\end{array} \rightarrow \frac{\sqrt{6}}{2} \\
& \frac{\sqrt{12}}{2} \rightarrow \frac{\sqrt{2 * 2 * 3}}{2} \rightarrow \frac{2 \sqrt{3}}{2} \rightarrow \sqrt{3} \\
& \frac{1}{\sqrt{2}} \rightarrow \frac{1}{\sqrt{2}} * \frac{\sqrt{2}}{\sqrt{2}} \rightarrow \frac{\sqrt{2}}{2} \\
& \frac{3}{\sqrt{5}} \rightarrow \frac{3}{\sqrt{5}} * \frac{\sqrt{5}}{\sqrt{5}} \rightarrow \frac{3 \sqrt{5}}{5}
\end{aligned}
$$

Describe the transformation to the parent function:

$$
g(x)=x^{2}-4
$$

down 4

Notice the x-intercepts are $(-2,0)$ and $(2,0)$
"Zero" of a 2-variable equation: the input value of an equation that causes the output to equal zero.
"Zeroes" often (but not always) are the x-intercepts of the graph.
"Zero" of a 2-variable equation: the input value that causes the output to equal zero.

1) Find Zeroes by taking square roots $y=x^{2}-4 \quad$ Set $' y=0$ "

$$
0=x^{2}-4 \text { Get the ' } x \text { ' squared }
$$ term by itself:

$x^{2}=4 \quad$ How do you "undo" a square function?

$$
\begin{aligned}
& \sqrt{x^{2}}=\sqrt{4} \\
& x=2,-2
\end{aligned}
$$

$$
x^{2}=4
$$

$$
(2)^{2}=4
$$

$$
(-2)^{2}=4 \quad \text { "-" number squared is positive }
$$

Describe the transformation: down 5
$g(x)=x^{2}-5 \quad$ Would you consider this equation "vertex form"?

(1) Convert to intercept form:

$$
y=x^{2}-5
$$

$0=(x-\sqrt{5})(x+\sqrt{5})$
$(-\sqrt{5}, 0)$ and $(\sqrt{5}, 0)$
The "zeroes" are: $x= \pm \sqrt{5}$
yes
Notice the positive x-intercept is between 2 and 3 .

What are the ' x ' intercepts (?, 0) and (?, 0)
Another method to find the zeroes: "Isolate the square, "undo" the
square. $0=x^{2}-5$

$$
\begin{gathered}
x^{2}=5 \\
\sqrt{x^{2}}=\sqrt{5} \\
x=-\sqrt{5}, \sqrt{5} \\
-\sqrt{5} \approx-2.24+\sqrt{5} \approx+2.24
\end{gathered}
$$

Find the zeroes of the following equations by taking square roots.

$$
\begin{aligned}
& y=x^{2}-1 \quad \text { Set } ' y=0 \text { ' } \\
& 0=x^{2}-1 \quad \text { Isolate the ' } x \text { ' squared term } \\
& x^{2}=1 \quad \text { Take square roots } \\
& \sqrt{x^{2}}=\sqrt{1} \quad x= \pm 1 \\
& y=2 x^{2}-4 \quad \text { Describe the } \\
& \text { transformations } \\
& 0=2 x^{2}-4 \quad \underline{V S F}=2 \text {, down } 4 \\
& 4=2 x^{2} \\
& 2=x^{2} \\
& \sqrt{x^{2}}=\sqrt{2} \quad x= \pm \sqrt{2} \quad x \approx \pm 1.41
\end{aligned}
$$

Find the zeroes of the following equations by taking square roots.

$$
y=x^{2}+1 \quad \begin{aligned}
& \text { Describe the } \\
& \text { transformations }
\end{aligned}
$$

Up 1
There are no x-intercepts!
$y=x^{2}+1$
Find the zeroes by taking square roots.
$0=x^{2}+1 \quad$ Set ${ }^{\prime} y=0 \prime$

$x^{2}=-1 \quad$ Isolate the ' x ' squared term
$\sqrt{x^{2}}=\sqrt{-1}$ Take square roots
$x= \pm i \quad$ The zeroes of the equation are imaginary numbe
We cannot graph imaginary numbers on the "real plane"
There are no x-intercepts, but there are two zeroes of the equation!

Which of the following have x-intercepts?
$y=2 x^{2}+1 \quad y=-x^{2}-2$
No x-intercepts

What are the zeroes of the functions?

$$
\begin{array}{lc}
0=2 x^{2}+1 & 0=-x^{2}-2 \\
-1=2 x^{2} & x^{2}=-2 \\
\frac{-1}{2}=x^{2} \quad \pm \frac{i}{\sqrt{2}}=x & x= \pm \sqrt{-2} \\
\pm \frac{\sqrt{-1}}{\sqrt{2}}=x \quad \pm \frac{i \sqrt{2}}{2}=x & x= \pm i \sqrt{2}
\end{array}
$$

$$
y=3 x^{2}-2
$$

two x-intercepts

$$
\begin{gathered}
0=3 x^{2}-2 \\
2=3 x^{2} \\
\frac{2}{3}=x^{2}
\end{gathered}
$$

$$
\pm \frac{\sqrt{2}}{\sqrt{3}}=x= \pm \frac{\sqrt{6}}{3}
$$

$$
y=(x-2)^{2}-9
$$

1. Transformations of the parent function? Right 2, down 9
2. Which form of the quadratic is this? Vertex Form
3. What is the vertex? (2, -9)
4. Convert the equation to standard form. $y=x^{2}-4 x-5$
5. Convert standard form equation into intercept form:

$$
y=(x-5)(x+1)
$$

6. What are the zeroes of the equation? $\quad x_{1}=5,-1$
7. Draw a graph of the function.
8. Are the zeroes real or imaginary?

The graph crosses the x-axis \rightarrow it has real number zeroes.

Can we use "isolate the square, "undo" the square to find the zeroes of the equation? $y=a(x-h)^{2}+k$

$$
\begin{aligned}
y= & (x-2)^{2}-9 \\
& x \text {-coord of vertex }
\end{aligned}
$$

Zeroes: x-coord. of vertex
Isolate the squared term

$$
\begin{array}{r}
0 \\
+9
\end{array}=(x-2)^{2}-9 .
$$

$$
9=(x-2)^{2}
$$

"take square roots"

$$
\begin{array}{ll}
\sqrt{9}=\sqrt{(x-2)^{2}} & \\
3=x-2 & f(0)=5 \\
\text { Solve for 'x' } & (5,0) \\
x=2+3 & x=2-3
\end{array}
$$

You can find the zeroes of vertex form using "isolate the square, undo the square".
Vertex form \rightarrow extract a square root.

Isolate the squared term

$$
9=(x-1)^{2}
$$

$$
\sqrt{9}=\sqrt{(x-1)^{2}} \quad \pm 3=x-1
$$

Solve for ' x ' $1 \pm 3=x$ simplify $x=4,-2$
Or, (harder) covert to standard form, then intercept form.

$$
\begin{array}{lc}
y=(x-1)^{2}-9 & y=(x-4)(x+2) \\
y=x^{2}-2 x+1-9 & 0=(x-4)(x+2) \\
y=x^{2}-2 x-8 & x=4,-2
\end{array}
$$

$$
\begin{aligned}
& y=a(x-h)^{2}+k \\
& y=(x-1)^{2}-9 \\
& \text { Let } \mathrm{y}=0 \quad 0=(x-1)^{2}-9
\end{aligned}
$$

$$
y=(x+3)^{2}-8
$$

1. Which form of the quadratic is this? Vertex Form
2. transformations of parent function? Left 3, down 8
3. vertex? (-3, -8)
4. Equivalent standard form equation. $y=x^{2}+6 x+1$
5. Convert standard form equation into intercept form:
It can't be factored
6. Draw a graph of the function.
7. Are the zeroes real or imaginary?

The graph crosses the x-axis
\rightarrow it has real number zeroes.
8. How can we find the zeroes?

If you can't factor the Standard Form version of the Vertex
Form equation that must be a way to find the zeroes!
Vertex form \rightarrow take square roots.
$y=a(x-h)^{2}+k \quad y=(x+3)^{2}-8$
\longrightarrow Let $\mathrm{y}=0 \quad 0=(x+3)^{2}-8$
Isolate the squared term $8=(x+3)^{2}$ "take square roots" $\sqrt{8}=\sqrt{(x+3)^{2}}$ $\pm \sqrt{8}=x+3 \quad$ Simplify the radical $\pm \sqrt{2 * 2 * 2}=x+3$
$\pm 2 \sqrt{2}=x+3$ Solve for ' x '
$x=(-3)+2 \sqrt{2}$
x-coord of vertex

$y=(x-2)^{2}-4$

$$
0=(x-2)^{2}-4
$$

$$
\text { Let } \mathrm{y}=0
$$

Isolate the squared term $4=(x-2)^{2}$
"Extract a square root" $\pm \sqrt{4}=\sqrt{(x-2)^{2}}$

$$
\pm 2=x-2
$$

Solve for ' x ' $2 \pm 2=x$

$$
\begin{aligned}
& x=2+2 \quad \text { simplify } \quad x=4,0 \\
& x=2-2
\end{aligned}
$$

Or, covert to standard form, then intercept form.

$$
\begin{array}{lc}
y=(x-2)^{2}-4 & y=x(x-4) \\
y=x^{2}-4 x+4-4 & 0=x(x-4) \\
y=x^{2}-4 x & x=0,4
\end{array}
$$

If standard form can't be factored, you need another way to find the zeroes of the equation.

$$
\begin{array}{ll}
y=2(x+7)^{2}-10 & y=2\left(x^{2}+14 x+49\right)-10 \\
y=2 x^{2}+28 x+86 & y=2 x^{2}+28 x+96-10
\end{array}
$$

$$
y=x^{2}+14 x+43
$$

43 is a prime number, it only has factors of 1 and 43

$$
y=2(x+7)^{2}-10 \quad \text { Let } y=0
$$

$$
0=2(x+7)^{2}-10 \quad \text { Isolate the Square term }
$$

$$
10=2(x+7)^{2} \text { Divide by } 2 \text { (both sides) }
$$

$5=(x+7)^{2} \quad$ "take square roots"

$$
\pm \sqrt{5}=\sqrt{(x+7)^{2}}
$$

$\pm \sqrt{5}=x+7$ subtract 7 from both sides
$-7 \pm \sqrt{5}=x$

$$
x=-7+\sqrt{5}
$$

$$
x=-7-\sqrt{5}
$$

Find the "zeroes" by "Extracting a square root"

$$
y=(x-2)^{2}-5
$$

$$
y=3(x+4)^{2}-12
$$

$$
y=-3(x-4)^{2}-27
$$

