

This formula often-times results in "ugly" calculations where students often make mistakes.

$$
\begin{aligned}
& \begin{aligned}
y=a x^{2}+b x+c \\
y=x^{2}-6 x+4
\end{aligned} \quad x=\frac{6}{2} \pm \frac{\sqrt{36-16}}{2} \\
& \begin{array}{r}
y=a x^{2}+b x+c \\
y=x^{2}-6 x+4 \\
a=1 \quad b=-6 \quad c=4 \\
x=\frac{-b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}
\end{array} \\
& x=3 \pm \frac{\sqrt{20}}{2} \\
& \begin{array}{r}
y=a x^{2}+b x+c \\
y=x^{2}-6 x+4 \\
a=1 \quad b=-6 \quad c=4 \\
x=\frac{-b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}
\end{array} \\
& x=\frac{-(~)}{2(~)} \pm \frac{\sqrt{()^{2}-[4(~)(~)]}}{2(~)} \\
& x=\frac{-(-6)}{2(1)} \pm \frac{\sqrt{(-6)^{2}-[4(1)(4)]}}{2(1)} \\
& x=3 \pm \frac{\sqrt{4} \sqrt{5}}{2} \\
& x=3 \pm \frac{2 \sqrt{5}}{2} \\
& x=3 \pm \sqrt{5}
\end{aligned}
$$

Find the X -intercepts from the Vertex Form Equations

$$
y=-2(x-3)^{2}+4 \quad \text { Set } \mathrm{y}=0(\mathrm{y} \text {-value of an } \mathrm{x} \text {-int. is } 0)
$$

$$
\text { Add } 8 \text { (left/right) }
$$

Divide by 4 (left/right)
$2=\left(_\right)^{2} \quad$ What number, squared, equals 2?
$2=(\sqrt{2})^{2} \quad 2=(-\sqrt{2})^{2}$
$\pm \sqrt{2}=x-5 \begin{aligned} & \begin{array}{l}\text { The expression inside of the } \\ \text { parentheses equals either } \\ \text { or }\end{array}\end{aligned}$
$x=5 \pm \sqrt{2} \quad$ Add 5 (left/right)

$$
\begin{array}{cl}
0=(x-3)^{2}-5 & \pm \sqrt{5}=x-3 \\
5=(x-3)^{2} & x=3 \pm \sqrt{5}
\end{array}
$$

How could you get the x -intercepts from the vertex form equation?

Set ' y ' to zero. Isolate the square, "undo" the square.
x-intercepts that came from the quadratic formula were:

$$
x=3 \pm \sqrt{5}
$$

Standard Form Equation
$y=x^{2}-6 x+4$
Vertex Form Equation

$$
y=(x-3)^{2}-5
$$

Add 8 (left/right)

Find the X -intercepts from the Vertex Form Equations

$$
y=(x-5)^{2}
$$

Write the names of the 3 forms of quadratic equation in the circles.

$$
y=-2(x-3)^{2}+4
$$

$$
y=-(x+2)^{2}+5
$$

3. You can convert standard form quadratic equations into intercept form quadratic equations by: factoring

$$
y=2 x^{2}+16 x+24 \rightarrow y=2(x+6)(x+2)
$$

3. You can convert intercept form quadratic equations into vertex form quadratic equations by:
a) Finding the x-coordinate of the vertex (half way between x-intercepts) $\quad x=-6,-2 \quad$ Vertex: $(-4$,
\qquad
b) Substituting the x-value into the equation to find the y-coordinate of the vertex. $y=2(-4+6)(-4+2)$ $y=2(2)(-2)=-8 \quad$ Vertex: $(-4,-8)$
c) Using the VSF and the vertex to write the vertex form equation.

$$
\text { VSF }=2 \text {, Vertex: }(-4,-8) \quad y=2(x+4)^{2}-8
$$

How can we convert Standard Form Quadratic Equations directly into Vertex form? (without converting to Intercept Form first?)
Remember the quadratic formula gave us these x-intercepts.
$y=x^{2}-6 x+4$
$x=\overbrace{\frac{-b}{2 a}} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}$
$x=3 \pm \sqrt{5}$
The x-coordinate of the vertex is 3 .
x-coord. of vertex $=\frac{-b}{2 a}$

$$
\begin{aligned}
& \text { What is the x-coordinate of the vertex? } \\
& \begin{array}{lc}
y=2 x^{2}+16 x+24 & \mathrm{x} \text {-coord. of vertex }=\frac{-b}{2 a} \\
\mathrm{a}=2 \quad \mathrm{~b}=16 & \frac{-b}{2 a}=\frac{-16}{2(2)}=-4
\end{array} \\
& \text { Vertex: }(-4, f(-4))
\end{aligned}
$$

What is the y-coordinate of the vertex?

$$
\begin{gathered}
f(-4)=2(-4)^{2}+16(-4)+24 \\
f(-4)=-8 \quad \text { Vertex: }(-4,-8)
\end{gathered}
$$

What is the Vertex form equation?

$$
\text { VSF }=2, \text { vertex }=(-4,-8) \quad y=2(x+4)^{2}-8
$$

What is the x -coordinate of the vertex?

$$
y=3 x^{2}+6 x-12
$$

We have converted the following standard form equations into vertex form. What are the x-intercepts of the following equations? $y=2 x^{2}+16 x+24$	$\rightarrow y=2(x+4)^{2}-8$
$y=x^{2}-6 x+13$	\rightarrow
$y=(x-3)^{2}+4$	
$y=3 x^{2}-6 x-12$	$y=3(x+1)^{2}-15$

Convert the following vortex form. Findorable standard form equations into x-intercepts. $y=x^{2}-2 x-12$
$y=x^{2}+20 x+99$
$y=x^{2}-14 x+50$

