

Find the X-intercepts from the Vertex Form Equations
$$y = -2(x-3)^2 + 4$$
Set $y = 0$ (y-value of an x-int. is 0)Add 8 (left/right)Divide by 4 (left/right) $2 = (_)^2$ What number, squared, equals 2? $2 = (\sqrt{2})^2$ $2 = (-\sqrt{2})^2$ $(\pm)\sqrt{2} = x - 5$ The expression inside of the
parentheses equals either $x = 5 \pm \sqrt{2}$ Add 5 (left/right)

Find the X-intercepts from the Vertex Form Equations

$$y = (x - 5)^2$$
 $y = -2(x - 3)^2 + 4$

$$y = -(x+2)^2 + 5$$

What have we learned?

1. The quadratic formula can give us x-intercepts (only if you have the *standard form equation*).

There are a lot of numbers and calculations. You can easily make a mistake.

2. If you "isolate the square, undo the square" on the <u>vertex form</u> <u>equation</u>, you can also find x-intercepts.

You have to know how to simplify square roots.

$$y = (x - 2)^2 - 12$$
 $x = 2 \pm \sqrt{4 * 3}$ $0 = (x - 2)^2 - 12$ $x = 2 \pm \sqrt{4\sqrt{3}}$ $12 = (x - 2)^2$ $x = 2 \pm \sqrt{4\sqrt{3}}$ $x = 2 \pm \sqrt{12}$ $x = 2 \pm 2\sqrt{3}$

 You can convert <u>standard form quadratic equations</u> into <u>intercept form quadratic equations</u> by: factoring
$y = 2x^2 + 16x + 24$ $\rightarrow y = 2(x+6)(x+2)$
 You can convert <u>intercept form quadratic equations</u> into <u>vertex form quadratic equations</u> by:
a) Finding the x-coordinate of the vertex (half way between x-intercepts) $x = -6, -2$ Vertex: $(-4, \)$
b) Substituting the x-value into the equation to find the y-coordinate of the vertex. $y = 2(-4+6)(-4+2)$
y = 2(2)(-2) = -8 Vertex: $(-4, -8)$
c) Using the VSF and the vertex to write the vertex form equation.
VSF = 2, Vertex: $(-4, -8)$ $y = 2(x + 4)^2 - 8$

We have converted the following standard form equations into vertex form. What are the x-intercepts of the following equations?	
$y = 2x^2 + 16x + 24 \Rightarrow$	$y = 2(x+4)^2 - 8$
$y = x^2 - 6x + 13 \Rightarrow$	$y = (x-3)^2 + 4$
$y = 3x^2 - 6x - 12$	$y = 3(x+1)^2 - 15$

Convert the following <u>non-factorable</u> standard form equations into vertex form. Find the x-intercepts. $y = x^2 - 2x - 12$ $y = x^2 + 20x + 99$ $y = x^2 - 14x + 50$