SM2 HANDOUT 5-3 (Factor Quadratic Equations; Lead Coefficient not equal to ' 1 ')
$y=3 x^{2}+15 x-42 \quad y=5 x^{2}-15 x-20$
\qquad
\qquad
What if there is no commgn factor AND the lead coefficient is NOT equal to 1? $\quad y=a x^{2}+b x+c$
(These come from multiplying binomials that also do not have lead coefficients of 1.)

$$
y=(2 x+1)(x+3)
$$

Use the "box method" to multiply the binomials

Notice a nice pattern when you multiply these binomials

$$
\begin{aligned}
& y=(2 x+1)(x+3) \\
& y=2 x^{2}+7 x+3
\end{aligned} \begin{aligned}
& \text { "right plus right" does not add } \\
& \text { up to } 7 \text {, but notice something. } \\
& 2 x^{2}+7 x+3
\end{aligned} \begin{aligned}
& \text { Are there any other factors } \\
& \text { of } 6 \text { that add up to } 7 ?
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
\quad \text { Standard form } \\
y=2 x^{2}+7 x+3 \quad \text { y-intercept? } \quad(0,3)
\end{array} \\
& \text { Intercept form } \\
& y=(2 x+1) x \text { x-intercepts? } \\
& \text { According to the zero product property, if: } \quad x+3=0 \\
& \text { then: } y=0 \\
& \text { then one } x \text {-intercept is: }(-3,0) \\
& \text { And if: } \begin{aligned}
2 x+1 & =0 \quad \text { then: } y=0 \\
-1 & -1 \\
2 x & =-1 \quad \text { The other } \mathrm{x} \text {-intercept is: } \quad\left(-\frac{1}{2}, 0\right) \\
\div 2 & \div 2 \\
\mathrm{x} & =-\frac{1}{2}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Standard form } \\
& y=7 x^{2}-12 x-4 \quad y \text {-intercept? } \\
& \text { Intercept form } \\
& y=(7 x+2)(x-2) \quad \text { x-intercepts? } \\
& y=6 x^{2}-29 x+9 \quad y \text {-intercept? } \\
& \text { Intercept form } \\
& y=(2 x-9)(3 x-1) \quad \underline{x} \text {-intercepts? } \\
& \square \square \\
& \text { x-intercepts? }
\end{aligned}
$$

