

$$
x^{2}+5 x+6
$$

Left times left is left

$(x+\ldots)(x+\ldots) \quad$ Right times right is right

$$
(x+2)(x+3)
$$

What are the factors of 6 that add up to 5 ?

Try the following:

$$
\begin{aligned}
& x^{2}-3 x-4 \quad=(x-4)(x+1) \\
& \left(x+_\right)\left(x+_\right) \quad \text { Right times right is right } \\
& \left(x+_\right)\left(x+_\right)
\end{aligned} \begin{aligned}
& \text { Right plus right is middle }
\end{aligned}
$$

Try the following:

$$
x^{2}+8 x+15=(x+3)(x+5)
$$

$$
(x+\widetilde{-})(x+\longrightarrow) \text { Right plus right is middle }
$$

$$
\begin{gathered}
(3)(5)=15 \quad \text { What are the factors of } 15 \\
\text { that add up to } 8 ?
\end{gathered}
$$

$$
3+5=8
$$

Factor the following:

$$
(x+\ldots)(x+\ldots) \quad \text { Right times right is right }
$$

$$
\begin{array}{ll}
x^{2}+10 x+21 & = \\
x^{2}-6 x-16 & = \\
x^{2}-9 x+18 & = \\
x^{2}+3 x+2 & = \\
\hline
\end{array}
$$

$$
\begin{array}{ll}
2 x^{2}+4 x+2 & \frac{\text { Always factor out the }}{\text { common factor first. }} \\
2\left(x^{2}+2 x+1\right) & \text { Now factor the trinomial. } \\
2(x+1)(x+1) &
\end{array}
$$

Your turn:

$$
\begin{array}{ll}
6 x^{2}+24 x+18 & = \\
3 x^{2}+9 x+6 & = \\
4 x^{2}-20 x-48 & = \\
& = \\
& = \\
& = \\
& = \\
& = \\
\hline
\end{array}
$$

$x^{2}-2$	We can call this the "difference of two squares"
$x^{2}+0 x-2$	Two numbers multiplied $=(-2)$ and added $=0$
$(-\sqrt{2})(+\sqrt{2})$	
$(x-\sqrt{2})(x+\sqrt{2})$	

$\left.\begin{array}{|cc|}\hline \text { Your turn: Multiply the conjugate pairs. } \\ (x-\sqrt{2})(x+\sqrt{2}) \square & \begin{array}{l}\text { Can we use } \\ \text { (his as a } \\ \text { thattern in } \\ \text { order to } \\ \text { factor the } \\ \text { difference of } \\ \text { two squares? }\end{array} \\ \text { A "nice" one. }\end{array}\right\}$

$$
\begin{aligned}
& \text { Your turn: factor the following binomials } \\
& \qquad \begin{aligned}
x^{2}-9 & =(x-\sqrt{9})(x+\sqrt{9}) \\
& =(x-3)(x+3) \\
x^{2}-6 & =(x-\sqrt{6})(x+\sqrt{6})
\end{aligned}
\end{aligned}
$$

Multiply this out: $\quad(x+i)(x-i)$

$$
\begin{align*}
& x^{2}-x i+x i-i^{2} \\
& \begin{array}{l}
\text { Inverse property } \quad i \text { squared }=-1 \\
\text { of addition! } \\
x^{2}-(-1) \\
x^{2}+1
\end{array}
\end{align*}
$$

$$
\text { Multiply: } \quad(x+i \sqrt{2})(x-i \sqrt{2}) \quad x^{2}+2
$$

What about the sum of two squares?

$$
\begin{aligned}
& x^{2}+1=(x-i)(x+i) \\
& x^{2}+2=\square \\
& x^{2}+3=? \square \\
& x^{2}+4=?- \\
& x^{2}+a=(x-i \sqrt{a})(x+i \sqrt{a}) \\
& x^{2}+7=? \\
&
\end{aligned}
$$

Can you see the pattern?

