

 $2x^{2} + 4x + 2$ Always factor out the common factor first. $2(x^{2} + 2x + 1)$ Now factor the trinomial. 2(x+1)(x+1)

$$x^{2} - 1$$
 "the difference of two squares"

$$x^{2} + 0x - 1$$
 Two numbers multiplied = (-1)
and added = 0
(-1)(+1)
(x-1)(x+1)
Conjugate pair (of binomials)
two binomials whose terms are exactly the same except
+/- for one pair of terms

$$(x-1)(x+1) - (-x+1)(x+1)$$

Your turn: factor the following binomials

$$x^{2}-9 = (x-\sqrt{9})(x+\sqrt{9})$$

$$= (x-3)(x+3)$$

$$x^{2}-6 = (x-\sqrt{6})(x+\sqrt{6})$$
Multiply this out: $(x+i)(x-i)$

$$x^{2} - xi + xi - i^{2}$$
Inverse property *i* squared = -1
of addition!

$$x^{2} - (-1)$$

$$x^{2} + 1$$

