Math-1010

Lesson 4-2

Add and Subtract Rational Expressions

What are "like terms" ?
Like variables: $2 x+3 y+4 x$
Multiples of the same variable
Like powers: $x^{2}+y^{2}+x^{3}-x^{2}$
same 'base' and same exponent.
Like radicals: $\sqrt{2}+\sqrt{3}+3 \sqrt{2}$ same 'radicand' and same index number.

Like fractions:

$$
\left(\frac{2}{3}, \frac{4}{3}, \frac{3}{4}\right.
$$

same denominator.

Adding Fractions

We can add "like fractions"

$$
\frac{2}{3}+\frac{1}{3}+\frac{4}{3}
$$

Combine the numerator over a common denominator.

$$
=\frac{2+1+4}{3}=\frac{7}{3}
$$

For fractions that involve integer numbers only, you can obtain a "brute-force" common denominator by multiplying the other fraction by:
"One in the form of" the other dominator divided by itself.

$$
\frac{42}{42} * \frac{1}{30}+\frac{1}{42} * \frac{30}{30} \rightarrow \frac{42}{1260}+\frac{30}{1260} \rightarrow \frac{72}{1260}
$$

This often results in fractions that have huge numbers in the numerator and denominator that must then be simplified.

It is much better to obtain the "least common denominator"

$$
\begin{aligned}
& \left.\frac{1}{30}+\frac{1}{42}=\frac{1}{6 * 5}+\frac{1}{6 * 7}=\frac{1}{6 * 5} * \frac{7}{7}\right)+\frac{1}{6 * 7} * \frac{5}{5} \\
& \text { (1) Factor each denominator. }
\end{aligned}
$$

(2) Multiply the $1^{\text {st }}$ fraction by "one in the form of" the missing factor that the $2^{\text {nd }}$ denominator has but the 1 st one does not have.

$$
\frac{1}{30}+\frac{1}{42}=\frac{1}{6 * 5} * \frac{7}{7}+\frac{1}{6 * 7} * \frac{5}{5} \quad \rightarrow \frac{7}{210}+\frac{5}{210}
$$

This results in much smaller numbers in the numerator and denominator compared to the "brute-force" method.
$\rightarrow \frac{7+5}{210} \rightarrow \frac{12}{210} \rightarrow \frac{2 * 6}{2 * 105} \rightarrow \frac{2 * 2 * 3}{2 * 5 * 21} \rightarrow \frac{\not Z * 2 * \not 2}{\not Z * 5 * \not Z * 7}$
Factor the resulting fraction in order to simplify it.

$$
\frac{1}{30}+\frac{1}{42} \rightarrow \frac{2}{35}
$$

For rational expression, a "brute-force" common denominator is possible but much harder to simplify.

What type of rational expressions can you combine together using addition or subtraction?

"like rational expressions"

Which of these expressions are "like expressions"?
(1.) $\frac{x}{(x+1)}$

$$
\text { 2. } \frac{3 x}{(x-1)} \quad 3 \cdot \frac{4}{(x-5)}
$$

$$
\text { (4. } \frac{2 x^{2}}{(x+1)}
$$

What is the excluded value for each expression?

1. $\frac{x}{(x+1)}$
2. $\frac{3 x}{(x-1)}$
3. $\frac{4}{(x-5)}$
$x \neq-1$
$x \neq 1$
$x \neq 5$

Adding/Subtraction Rational Expressions
The easy problem:

$$
\frac{2}{7}+\frac{3}{7}=\frac{2+3}{7}=\frac{5}{7}
$$

Combine the numerator over a common denominator.
The easy problem:

$$
\frac{4}{(x-5)}+\frac{3 x}{(x-5)}=\frac{4+3 x}{(x-5)}
$$

Combine the numerator over a common denominator.

Your turn: add/subtract

$$
\begin{aligned}
& \frac{x+2}{2 x^{2}}+\frac{x-4}{2 x^{2}}=\frac{x+2+x-4}{2 x^{2}}=\frac{2 x-2}{2 x^{2}} \\
& =\frac{2(x-1)}{2^{*} x^{2}}=\frac{(x-1)}{x^{2}} \quad \text { Inverse Property of Multiplication. }
\end{aligned}
$$

Can you do it this way?
$\frac{x+2}{2 x^{2}}+\frac{x-4}{2 x^{2}}=\frac{x+2}{2 * x^{*} x}+\frac{x-(2 * 2)}{2 * x^{*} x}=\frac{1}{x}+\frac{-2}{x}$
NO!
You CANNOT use the Inverse Property of Multiplication on addends.

Your turn: add/subtract

$$
\frac{3 x+2}{2 x^{2}}-\frac{x-4}{2 x^{2}} \rightarrow \frac{3 x+2-(x-4)}{2 x^{2}} \rightarrow \frac{3 x+2-x+4}{2 x^{2}}
$$

Subtract the entire numerator of the $2^{\text {nd }}$ faction!
$\rightarrow \frac{2 x+6}{2 x^{2}} \rightarrow \frac{2(x+3)}{2 x^{2}} \rightarrow \frac{(x+3)}{x^{2}}$
Simplify your fractions!

$$
\begin{gathered}
\frac{2 x-7}{x^{2}-25}-\frac{x-2}{x^{2}-25} \rightarrow \frac{2 x-7-x+2}{x^{2}-25} \rightarrow \frac{x-5}{x^{2}-25} \\
\rightarrow \frac{(x-5)}{(x-5)(x+5)} \rightarrow \frac{1}{(x+5)}
\end{gathered}
$$

No common denominator.

$$
\frac{(2 x-1)}{2 x}+\frac{(x-2)}{3 \underline{x}}
$$

Find what missing from each denominator.

Multiply the left side fraction by one in the form of $3 / 3$

$$
\frac{3}{3} * \frac{(2 x-1)}{2 x}+\frac{(x-2)}{3 x} * \frac{2}{2}=\frac{3(2 x-1)}{2 * 3 * x}+\frac{2(x-2)}{2 * 3 * x}
$$

Multiply the right side fraction by one in the form of $2 / 2$
$=\frac{3(2 x-1)+2(x-2)}{6 x}=\frac{6 x-3+2 x-4}{6 x}=\frac{8 x-7}{6 x}$

$$
\begin{aligned}
& \frac{x-1}{2 x}+\frac{2 x+3}{x}=\frac{(x-1)}{2 x}+\left(\frac{2}{2}\right) * \frac{(2 x+3)}{x} \\
& =\frac{(x-1)}{2 x}+\frac{2(2 x+3)}{2 x}=\frac{(x-1)}{2 x}+\frac{(4 x+6)}{2 x} \\
& =\frac{(x-1)+(4 x+6)}{2 x}=\frac{5 x+5}{2 x}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{3 x+1}{2 x}-\frac{1}{5}=\frac{5}{5} * \frac{(3 x+1)}{2 x}-\frac{1}{5} * \frac{2 x}{2 x} \\
& =\frac{5(3 x+1)}{10 x}-\frac{2 x}{10 x}=\frac{5(3 x+1)-2 x}{10 x} \\
& =\frac{15 x+5-2 x}{10 x}=\frac{13 x+5}{10 x}
\end{aligned}
$$

LCD: Least Common Denominator

$$
\begin{aligned}
& \frac{x-7}{x^{2}-5 x} \begin{array}{l}
\text { and }
\end{array} \quad \rightarrow \frac{x-7}{x(x-5)}
\end{aligned}
$$

$$
\frac{x-2}{x^{2}-25} \quad \rightarrow \frac{x-2}{(x-5)(x+5)}
$$

Rewrite each expression in terms of their LCD

$$
\begin{aligned}
& \frac{x-7}{x^{2}-5 x}=\frac{(x-7)(x+5)}{x(x-5)(x+5)} \\
& \frac{x-2}{x^{2}-25}=\frac{x(x-2)}{x(x-5)(x+5)}
\end{aligned}
$$

Find what is already common $\frac{12}{x^{2}+5 x-24}+\frac{3}{x-3}$ between the two denominators.
$\frac{12}{x+8)(x-3)}+\frac{3}{(x-3)} * \frac{(x+8)}{(x+8)}$
Multiply by "one in the form of" the missing factor of the denominator divided by the missing factor.

$$
\begin{aligned}
& =\frac{12}{(x+8)(x-3)}+\frac{3}{(x-3)} * \frac{(x+8)}{(x+8)}=\frac{12+3(x+8)}{(x+8)(x-3)} \\
& =\frac{12+3 x+24}{(x+8)(x-3)}=\frac{3 x+36}{(x+8)(x-3)}=\frac{3(x+12)}{(x+8)(x-3)}
\end{aligned}
$$

$$
\frac{(x+1)}{x^{2}-2 x-3}+\frac{2}{x-3}=\frac{(x+1)}{(x+1)(x-3)}+\frac{2}{x-3}
$$

Simplify before you multiply (by "one in the form qf..."

$$
=\frac{1}{x-3}+\frac{2}{x-3}=\frac{3}{x-3}
$$

But, it's not wrong to go a different (but more complicated) route.

$$
\begin{aligned}
& \frac{(x+1)}{(x+1)(x-3)}+\frac{2}{x-3} * \frac{(x+1)}{(x+1)} \rightarrow \frac{(x+1)+2(x+1)}{(x+1)(x-3)} \\
& \rightarrow \frac{3 x+3}{(x+1)(x-3)} \rightarrow \frac{3(x+1)}{(x+1)(x-3)}=\frac{3}{x-3}
\end{aligned}
$$

